Electrochemistry and on-cell reformation modeling for solid oxide fuel cell stacks

K. P. Recknagle, D. T. Jarboe, K. I. Johnson, V. Korolev, M. A. Khaleel, P. Singh

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Providing adequate and efficient cooling schemes for solid-oxide-fuel-cell (SOFC) stacks continues to be a challenge coincident with the development of larger, more powerful stacks. The endothermic steam-methane reformation reaction can provide cooling and improved system efficiency when performed directly on the electrochemically active anode. Rapid kinetics of the endothermic reaction typically causes a localized temperature depression on the anode near the fuel inlet. It is desirable to extend the endothermic effect over more of the cell area and mitigate the associated differences in temperature on the cell to alleviate subsequent thermal stresses. In this study, modeling tools validated for the prediction of fuel use, on-cell methane reforming, and the distribution of temperature within SOFC stacks are employed to provide direction for modifying the catalytic activity of anode materials to control the methane conversion rate. Improvements in thermal management that can be achieved through on-cell reforming is predicted and discussed. Two operating scenarios are considered, one in which the methane fuel is fully pre-reformed and another in which a substantial percentage of the methane is reformed on-cell. For the latter, a range of catalytic activity is considered, and the predicted thermal effects on the cell are presented. Simulations of the cell electrochemical and thermal performance with and without on-cell reforming, including structural analyses, show a substantial decrease in thermal stresses for an on-cell reforming case with slowed methane conversion rate.

Original languageEnglish
Title of host publicationAdvances in Solid Oxide Fuel Cells II - A Collection of Papers Presented at the 30th International Conference on Advanced Ceramics and Composites
Pages409-418
Number of pages10
Edition4
StatePublished - 2006
Externally publishedYes
EventAdvances in Solid Oxide Fuel Cells II - 30th International Conference on Advanced Ceramics and Composites - Cocoa Beach, FL, United States
Duration: Jan 22 2006Jan 27 2006

Publication series

NameCeramic Engineering and Science Proceedings
Number4
Volume27
ISSN (Print)0196-6219

Conference

ConferenceAdvances in Solid Oxide Fuel Cells II - 30th International Conference on Advanced Ceramics and Composites
Country/TerritoryUnited States
CityCocoa Beach, FL
Period01/22/0601/27/06

Fingerprint

Dive into the research topics of 'Electrochemistry and on-cell reformation modeling for solid oxide fuel cell stacks'. Together they form a unique fingerprint.

Cite this