TY - JOUR
T1 - Electrochemical nitrite sensing for urine nitrification
AU - Britschgi, Livia
AU - Villez, Kris
AU - Schrems, Peter
AU - Udert, Kai M.
N1 - Publisher Copyright:
© 2020 The Authors
PY - 2020/12/1
Y1 - 2020/12/1
N2 - Sensing nitrite in-situ in wastewater treatment processes could greatly simplify process control, especially during treatment of high-strength nitrogen wastewaters such as digester supernatant or, as in our case, urine. The two technologies available today, i.e. an on-line nitrite analyzer and a spectrophotometric sensor, have strong limitations such as sample preparation, cost of ownership and strong interferences. A promising alternative is the amperometric measurement of nitrite, which we assessed in this study. We investigated the sensor in a urine nitrification reactor and in ex-situ experiments. Based on theoretical calculations as well as a practical approach, we determined that the critical nitrite concentrations for nitrite oxidizing bacteria lie between 12 and 30 mgN/L at pH 6 to 6.8. Consequently, we decided that the sensor should be able to reliably measure concentrations up to 50 mgN/L, which is about double the value of the critical nitrite concentration. We found that the influences of various ambient conditions, such as temperature, pH, electric conductivity and aeration rate, in the ranges expected in urine nitrification systems, are negligible. For low nitrite concentrations, as expected in municipal wastewater treatment, the tested amperometric nitrite sensor was not sufficiently sensitive. Nevertheless, the sensor delivered reliable measurements for nitrite concentrations of 5–50 mgN/L or higher. This means that the amperometric nitrite sensor allows detection of critical nitrite concentrations without difficulty in high-strength nitrogen conversion processes, such as the nitrification of human urine.
AB - Sensing nitrite in-situ in wastewater treatment processes could greatly simplify process control, especially during treatment of high-strength nitrogen wastewaters such as digester supernatant or, as in our case, urine. The two technologies available today, i.e. an on-line nitrite analyzer and a spectrophotometric sensor, have strong limitations such as sample preparation, cost of ownership and strong interferences. A promising alternative is the amperometric measurement of nitrite, which we assessed in this study. We investigated the sensor in a urine nitrification reactor and in ex-situ experiments. Based on theoretical calculations as well as a practical approach, we determined that the critical nitrite concentrations for nitrite oxidizing bacteria lie between 12 and 30 mgN/L at pH 6 to 6.8. Consequently, we decided that the sensor should be able to reliably measure concentrations up to 50 mgN/L, which is about double the value of the critical nitrite concentration. We found that the influences of various ambient conditions, such as temperature, pH, electric conductivity and aeration rate, in the ranges expected in urine nitrification systems, are negligible. For low nitrite concentrations, as expected in municipal wastewater treatment, the tested amperometric nitrite sensor was not sufficiently sensitive. Nevertheless, the sensor delivered reliable measurements for nitrite concentrations of 5–50 mgN/L or higher. This means that the amperometric nitrite sensor allows detection of critical nitrite concentrations without difficulty in high-strength nitrogen conversion processes, such as the nitrification of human urine.
KW - Amperometric sensor
KW - Continuous measurement
KW - Critical nitrite concentration
KW - Electrochemical measurement
KW - In-situ measurement
KW - Nitrite measurement
UR - http://www.scopus.com/inward/record.url?scp=85086125260&partnerID=8YFLogxK
U2 - 10.1016/j.wroa.2020.100055
DO - 10.1016/j.wroa.2020.100055
M3 - Article
AN - SCOPUS:85086125260
SN - 2589-9147
VL - 9
JO - Water Research X
JF - Water Research X
M1 - 100055
ER -