TY - JOUR
T1 - Electrochemical investigations of ionic liquids with vinylene carbonate for applications in rechargeable lithium ion batteries
AU - Sun, Xiao Guang
AU - Dai, Sheng
PY - 2010/6/1
Y1 - 2010/6/1
N2 - Ionic liquids based on methylpropylpyrrolidinium (MPPY) and methylpropylpiperidinium (MPPI) cations and bis(trifluoromethanesulfonyl)imide (TFSI) anion have been synthesized and characterized by thermal analysis, cyclic voltammetry, impedance spectroscopy as well as galvanostatic charge/discharge tests. 10 wt% of vinylene carbonate (VC) was added to the electrolytes of 0.5 M LiTFSI/MPPY.TFSI and 0.5 M LiTFSI/MPPI.TFSI, which were evaluated in Li || natural graphite (NG) half cells at 25 °C and 50 °C under different current densities. At 25 °C, due to their intrinsic high viscosities, the charge/discharge capacities under the current density of 80 μA cm-2 were much lower than those under the current density of 40 μA cm-2. At 50 °C, with reduced viscosities, the charge/discharge capacities under both current densities were almost indistinguishable, which were also close to the typical values obtained using conventional carbonate electrolytes. In addition, the discharge capacities of the half cells were very stable with cycling, due to the effective formation of solid electrolyte interphase (SEI) on the graphite electrode. On the contrary, the charge/discharge capacities of the Li || LiCoO2 cells using both ionic liquid electrolytes under the current density of 40 μA cm-2 decreased continually with cycling, which were primarily due to the low oxidative stability of VC on the surface of LiCoO2.
AB - Ionic liquids based on methylpropylpyrrolidinium (MPPY) and methylpropylpiperidinium (MPPI) cations and bis(trifluoromethanesulfonyl)imide (TFSI) anion have been synthesized and characterized by thermal analysis, cyclic voltammetry, impedance spectroscopy as well as galvanostatic charge/discharge tests. 10 wt% of vinylene carbonate (VC) was added to the electrolytes of 0.5 M LiTFSI/MPPY.TFSI and 0.5 M LiTFSI/MPPI.TFSI, which were evaluated in Li || natural graphite (NG) half cells at 25 °C and 50 °C under different current densities. At 25 °C, due to their intrinsic high viscosities, the charge/discharge capacities under the current density of 80 μA cm-2 were much lower than those under the current density of 40 μA cm-2. At 50 °C, with reduced viscosities, the charge/discharge capacities under both current densities were almost indistinguishable, which were also close to the typical values obtained using conventional carbonate electrolytes. In addition, the discharge capacities of the half cells were very stable with cycling, due to the effective formation of solid electrolyte interphase (SEI) on the graphite electrode. On the contrary, the charge/discharge capacities of the Li || LiCoO2 cells using both ionic liquid electrolytes under the current density of 40 μA cm-2 decreased continually with cycling, which were primarily due to the low oxidative stability of VC on the surface of LiCoO2.
KW - Additive
KW - Ionic liquids
KW - Lithium ion batteries
KW - Piperidinium
KW - Pyrrolidinium
KW - Vinylene carbonate
UR - http://www.scopus.com/inward/record.url?scp=77950860662&partnerID=8YFLogxK
U2 - 10.1016/j.electacta.2010.03.019
DO - 10.1016/j.electacta.2010.03.019
M3 - Article
AN - SCOPUS:77950860662
SN - 0013-4686
VL - 55
SP - 4618
EP - 4626
JO - Electrochimica Acta
JF - Electrochimica Acta
IS - 15
ER -