Abstract
Reduction of U(VI) to U(IV) on mineral surfaces is often considered a one-step two-electron process. However, stabilized U(V), with no evidence of U(IV), found in recent studies indicates U(VI) can undergo a one-electron reduction to U(V) without further progression to U(IV). We investigated reduction pathways of uranium by reducing U(VI) electrochemically on a magnetite electrode at pH 3.4. Cyclic voltammetry confirms the one-electron reduction of U(VI) to U(V). Formation of nanosize uranium precipitates on the magnetite surface at reducing potentials and dissolution of the solids at oxidizing potentials are observed by in situ electrochemical atomic force microscopy. XPS analysis of the magnetite electrodes polarized in uranium solutions at voltages from -0.1 to -0.9 V (E0U(VI)/U(V)= -0.135 V vs Ag/AgCl) show the presence of only U(V) and U(VI). The sample with the highest U(V)/U(VI) ratio was prepared at -0.7 V, where the longest average U-Oaxial distance of 2.05 ± 0.01 Å was evident in the same sample revealed by extended X-ray absorption fine structure analysis. The results demonstrate that the electrochemical reduction of U(VI) on magnetite only yields U(V), even at a potential of -0.9 V, which favors the one-electron reduction mechanism. U(V) does not disproportionate but stabilizes on magnetite through precipitation of mixed-valence state U(V)/U(VI) solids.
Original language | English |
---|---|
Pages (from-to) | 6206-6213 |
Number of pages | 8 |
Journal | Environmental Science and Technology |
Volume | 49 |
Issue number | 10 |
DOIs | |
State | Published - May 19 2015 |
Externally published | Yes |