TY - JOUR
T1 - Elastomeric Nanocomposite with Solvent-Free, One Step, In Situ Shear Exfoliation of Graphite to Graphene
AU - Rahman, Ashiqur
AU - Salam, Abdur Rahman Bin Abdus
AU - Boebinger, Matthew G.
AU - Touhami, Ahmed
AU - Lynch, Jennifer
AU - Ashraf, Ali
N1 - Publisher Copyright:
© 2025 The Author(s). Advanced Materials Interfaces published by Wiley-VCH GmbH.
PY - 2025
Y1 - 2025
N2 - A graphene nanoflake (GNF)-enhanced elastomeric nanocomposite (G-EMC) is fabricated following an innovative, cost-effective, single-step, in situ shear exfoliation (ISE) method from low-cost bulk material, graphite, where uniform mixing happens simultaneously within the elastomer matrix. Electron microscopy, atomic force microscopy, and photo-induced force microscopy results show good dispersion of GNFs with exfoliation to a few layers and uniform distribution in the elastomer matrix. X-ray photoelectron spectroscopy analysis shows less than 1% oxygen-containing functional groups/impurity, enhanced bonding through the formation of edge sites as fracture occurs across the GNF basal plane, and pi-pi interactions with newly exfoliated planar basal plane surfaces of the GNFs. Raman spectroscopy results confirm the formation of GNFs with only a few layers of graphene formed by the ISE process. Fabricated 10 wt.% G-EMC nanocomposites show a 400%–500% increase in strength and fracture toughness. And 35 wt.% G-EMCs provide an electrical conductivity of 25.64 S m−1 and a sensor gauge factor of 45. The resulting intrinsic piezo resistivity of the fabricated nanocomposite has been exploited to fabricate a multi-functional wired and wireless sensor for detecting different body movements, speech, human vital functions, solvents, and biomolecules.
AB - A graphene nanoflake (GNF)-enhanced elastomeric nanocomposite (G-EMC) is fabricated following an innovative, cost-effective, single-step, in situ shear exfoliation (ISE) method from low-cost bulk material, graphite, where uniform mixing happens simultaneously within the elastomer matrix. Electron microscopy, atomic force microscopy, and photo-induced force microscopy results show good dispersion of GNFs with exfoliation to a few layers and uniform distribution in the elastomer matrix. X-ray photoelectron spectroscopy analysis shows less than 1% oxygen-containing functional groups/impurity, enhanced bonding through the formation of edge sites as fracture occurs across the GNF basal plane, and pi-pi interactions with newly exfoliated planar basal plane surfaces of the GNFs. Raman spectroscopy results confirm the formation of GNFs with only a few layers of graphene formed by the ISE process. Fabricated 10 wt.% G-EMC nanocomposites show a 400%–500% increase in strength and fracture toughness. And 35 wt.% G-EMCs provide an electrical conductivity of 25.64 S m−1 and a sensor gauge factor of 45. The resulting intrinsic piezo resistivity of the fabricated nanocomposite has been exploited to fabricate a multi-functional wired and wireless sensor for detecting different body movements, speech, human vital functions, solvents, and biomolecules.
KW - elastomer
KW - environment-friendly
KW - graphene
KW - in situ shear exfoliation
KW - multifunctional
KW - sensor
UR - http://www.scopus.com/inward/record.url?scp=85214385729&partnerID=8YFLogxK
U2 - 10.1002/admi.202400803
DO - 10.1002/admi.202400803
M3 - Article
AN - SCOPUS:85214385729
SN - 2196-7350
JO - Advanced Materials Interfaces
JF - Advanced Materials Interfaces
ER -