TY - JOUR
T1 - Efficient semi-transparent perovskite quantum dot photovoltaics enabled by asymmetric dielectric/metal/dielectric transparent electrodes
AU - Kim, Jigeon
AU - Kim, Dongeon
AU - Kim, Wooyeon
AU - Woo, Sungho
AU - Baek, Se Woong
AU - Ko, Min Jae
AU - Kim, Younghoon
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2023/8/1
Y1 - 2023/8/1
N2 - CsPbI3 perovskite quantum dots (CsPbI3-PQDs) have a high potential as semi-transparent photovoltaic absorbers because of the facile control of film thicknesses, size-tunable optical band gaps, and nanometer-scale grain sizes suppressing light scattering. Conventional semi-transparent CsPbI3-PQD solar cells showed low photovoltaic performances due to the low electrical conductivity of the graphene electrodes. Here we report that dielectric/ultra-thin metal/dielectric (DMD) electrodes with excellent optical transmittance and electrical conductivity deliver superior photovoltaic performances in the semi-transparent CsPbI3-PQD solar cells. Particularly, the asymmetric DMD electrodes composed of MoOx 15 nm/Au 10 nm/MoOx 35 nm (asym-MAM) stacks exhibit higher optical transmittance than that of the symmetric MoOx 15 nm/Au 10 nm/MoOx 15 nm (sym-MAM) stacks. The optical simulation confirms that asym-MAM stacks reduce the parasitic absorption loss in metal interlayers. Therefore, the asym-MAM stacks with a high electrical conductivity show a higher average visible transmittance (AVT) than that of the sym-MAM. Consequently, the semi-transparent CsPbI3-PQD solar cells fabricated using the asym-MAM transparent top electrodes show a power conversion efficiency of 11.3% with a considerable AVT values of 23.4% (400–800 nm) and 20.0% (380–780 nm), respectively, which were calculated from their transmittance spectra. This is the highest-efficiency semi-transparent PQD solar cells that can be used for solar window applications requiring an AVT value of over 20%.
AB - CsPbI3 perovskite quantum dots (CsPbI3-PQDs) have a high potential as semi-transparent photovoltaic absorbers because of the facile control of film thicknesses, size-tunable optical band gaps, and nanometer-scale grain sizes suppressing light scattering. Conventional semi-transparent CsPbI3-PQD solar cells showed low photovoltaic performances due to the low electrical conductivity of the graphene electrodes. Here we report that dielectric/ultra-thin metal/dielectric (DMD) electrodes with excellent optical transmittance and electrical conductivity deliver superior photovoltaic performances in the semi-transparent CsPbI3-PQD solar cells. Particularly, the asymmetric DMD electrodes composed of MoOx 15 nm/Au 10 nm/MoOx 35 nm (asym-MAM) stacks exhibit higher optical transmittance than that of the symmetric MoOx 15 nm/Au 10 nm/MoOx 15 nm (sym-MAM) stacks. The optical simulation confirms that asym-MAM stacks reduce the parasitic absorption loss in metal interlayers. Therefore, the asym-MAM stacks with a high electrical conductivity show a higher average visible transmittance (AVT) than that of the sym-MAM. Consequently, the semi-transparent CsPbI3-PQD solar cells fabricated using the asym-MAM transparent top electrodes show a power conversion efficiency of 11.3% with a considerable AVT values of 23.4% (400–800 nm) and 20.0% (380–780 nm), respectively, which were calculated from their transmittance spectra. This is the highest-efficiency semi-transparent PQD solar cells that can be used for solar window applications requiring an AVT value of over 20%.
KW - CsPbI perovskites
KW - Dielectric/metal/dielectric electrodes
KW - Optical simulations
KW - Perovskite quantum dots
KW - Semi-transparent solar cells
UR - http://www.scopus.com/inward/record.url?scp=85163325161&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2023.143824
DO - 10.1016/j.cej.2023.143824
M3 - Article
AN - SCOPUS:85163325161
SN - 1385-8947
VL - 469
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 143824
ER -