Abstract
Oak Ridge National Laboratory (ORNL) experimental neutron science facilities produce 1.2 TB a day of raw event-based data that is stored using the standard metadata-rich NeXus schema built on top of the HDF5 file format. Performance of several data reduction workflows is largely determined by the amount of time spent on the loading and processing algorithms in Mantid, an open-source data analysis framework used across several neutron sciences facilities around the world. The present work introduces new data management algorithms to address identified input output (I/O) bottlenecks on Mantid. First, we introduce an in-memory binary-tree metadata index that resemble NeXus data access patterns to provide a scalable search and extraction mechanism. Second, data encapsulation in Mantid algorithms is optimally redesigned to reduce the total compute and memory runtime footprint associated with metadata I/O reconstruction tasks. Results from this work show speed ups in wall-clock time on ORNL data reduction workflows, ranging from 11% to 30% depending on the complexity of the targeted instrument-specific data. Nevertheless, we highlight the need for more research to address reduction challenges as experimental data volumes increase.
Original language | English |
---|---|
Title of host publication | Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020 |
Editors | Xintao Wu, Chris Jermaine, Li Xiong, Xiaohua Tony Hu, Olivera Kotevska, Siyuan Lu, Weijia Xu, Srinivas Aluru, Chengxiang Zhai, Eyhab Al-Masri, Zhiyuan Chen, Jeff Saltz |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 2674-2680 |
Number of pages | 7 |
ISBN (Electronic) | 9781728162515 |
DOIs | |
State | Published - Dec 10 2020 |
Event | 8th IEEE International Conference on Big Data, Big Data 2020 - Virtual, Atlanta, United States Duration: Dec 10 2020 → Dec 13 2020 |
Publication series
Name | Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020 |
---|
Conference
Conference | 8th IEEE International Conference on Big Data, Big Data 2020 |
---|---|
Country/Territory | United States |
City | Virtual, Atlanta |
Period | 12/10/20 → 12/13/20 |
Funding
This manuscript has been authored by UT-Battelle, LLC under Contract No. DEAC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/ doe-public-access-plan). ACKNOWLEDGMENT Work at Oak Ridge National Laboratory was sponsored by the Division of Scientific User Facilities, Office of Basic Energy Sciences, US Department of Energy, under Contract no. DE-AC05-00OR22725 with UT-Battelle, LLC. We would like thank Dr. Mathieu Doucet, Dr James Kohl, and Mr. Rich Crompton of the Neutron Sciences Division at Oak Ridge National Laboratory for their helpful input to this work.
Keywords
- HDF5
- Mantid
- NeXus
- data management
- experimental data
- indexing
- metadata
- neutron scattering
- reduction workflows