TY - GEN
T1 - Effects of strain amplitude and loading path on cyclic behavior and martensitic transformation of 304 stainless steel
AU - Li, Yajing
AU - Yu, Dunji
AU - Chen, Xu
N1 - Publisher Copyright:
Copyright © 2018 ASME.
PY - 2018
Y1 - 2018
N2 - Effects of strain amplitude and loading path on cyclic deformation behavior and martensitic transformation of 304 stainless steel were experimentally investigated at room temperature. Series of symmetrical strain-control low cycle fatigue tests with strain amplitude ranging from 0.4% to 1.0% and various loading paths (uniaxial, torsional, proportional, rhombus, square and circular) with the same equivalent strain amplitude of 0.5% were carried out. Three-stage cyclic deformation behavior containing initial hardening, cyclic softening or saturation, and secondary hardening as well as near-linear relationship between α’-martensite content and number of cycles was observed during the whole life regime as for each test. Besides, a nearly linear relation between peak stress and α’-martensite content was found during secondary hardening stage. Furthermore, higher strain amplitude or non-proportionality of loading path resulted in higher cyclic stress response and α’-martensite content growth rate, defined by the slope of curves of α’-martensite content versus number of cycles.
AB - Effects of strain amplitude and loading path on cyclic deformation behavior and martensitic transformation of 304 stainless steel were experimentally investigated at room temperature. Series of symmetrical strain-control low cycle fatigue tests with strain amplitude ranging from 0.4% to 1.0% and various loading paths (uniaxial, torsional, proportional, rhombus, square and circular) with the same equivalent strain amplitude of 0.5% were carried out. Three-stage cyclic deformation behavior containing initial hardening, cyclic softening or saturation, and secondary hardening as well as near-linear relationship between α’-martensite content and number of cycles was observed during the whole life regime as for each test. Besides, a nearly linear relation between peak stress and α’-martensite content was found during secondary hardening stage. Furthermore, higher strain amplitude or non-proportionality of loading path resulted in higher cyclic stress response and α’-martensite content growth rate, defined by the slope of curves of α’-martensite content versus number of cycles.
UR - http://www.scopus.com/inward/record.url?scp=85056825112&partnerID=8YFLogxK
U2 - 10.1115/pvp2018-84888
DO - 10.1115/pvp2018-84888
M3 - Conference contribution
AN - SCOPUS:85056825112
T3 - American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
BT - Materials and Fabrication
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2018 Pressure Vessels and Piping Conference, PVP 2018
Y2 - 15 July 2018 through 20 July 2018
ER -