Effects of outer top gas injection on ICRF coupling in ASDEX Upgrade: Towards modelling of ITER gas injection

W. Zhang, V. Bobkov, J. M. Noterdaeme, W. Tierens, R. Bilato, D. Carralero, D. Coster, J. Jacquot, P. Jacquet, T. Lunt, R. A. Pitts, V. Rohde, G. Siegl, H. Fuenfgelder, D. Aguiam, A. Silva, L. Colas, S. Ceccuzzi

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

The influence of outer top gas injection on the scrape-off layer (SOL) density and ion cyclotron range of frequency (ICRF) coupling has been studied in ASDEX Upgrade (AUG) L-mode plasmas for the first time. The three-dimensional (3D) edge plasma fluid and neutral transport code EMC3-EIRENE is used to simulate the SOL plasma density, and the 3D wave code RAPLICASOL is used to compute the ICRF coupling resistance with the calculated density. Improvements have been made in the EMC3-EIRENE simulations by fitting transport parameters separately for each gas puffing case. It is found that the calculated local density profiles and coupling resistances are in good agreement with the experimental ones. The results indicate that the SOL density increase depends sensitively on the spreading of the injected outer top gas. If more gas enters into the main chamber through the paths near the top of vessel, the SOL density increase will be more toroidally uniform; if more gas chooses the paths closer to the mid-plane, then the SOL density increase will be more local and more significant. Among the various local gas puffing methods, the mid-plane gas valve close to the antenna is still the best option in terms of improving ICRF coupling. Differences between the outer top gas puffing in AUG and the outer top gas puffing in ITER are briefly summarized. Instructive suggestions for ITER and future plans for ITER gas injection simulations are discussed.

Original languageEnglish
Article number075004
JournalPlasma Physics and Controlled Fusion
Volume59
Issue number7
DOIs
StatePublished - May 18 2017
Externally publishedYes

Funding

FundersFunder number
Horizon 2020 Framework Programme633053

    Keywords

    • 3D simulations
    • ICRF coupling
    • ITER
    • gas puffing/fuelling
    • scrape-off layer

    Fingerprint

    Dive into the research topics of 'Effects of outer top gas injection on ICRF coupling in ASDEX Upgrade: Towards modelling of ITER gas injection'. Together they form a unique fingerprint.

    Cite this