Effects of Ink Formulation on the Structure and Performance of PGM-Free Catalyst Layer in PEMFCs

Chenzhao Li, Shengwen Liu, Yachao Zeng, Yadong Liu, Gang Wu, David A. Cullen, Jian Xie

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

Platinum group metal (PGM) catalysts are the major electrocatalysts for oxygen reduction reaction (ORR) in the polymer electrolyte membrane fuel cells (PEMFCs). The cost becomes unaffordable if the PEMFC is in massive application. The PGM-Free catalyst shows very promising activity in rotation disk electrode (RDE) testing. The half-wave potential could reach 0.91 V versus standard hydrogen electrode (SHE). However, in a membrane electrode assembly (MEA), the performance of PGM-Free catalysts is not good enough to replace the PGM catalysts. Since the PGM-free catalysts are so different from the PGM catalysts in terms of catalytic activity, stability, surface conditions, particle size, etc., the fabrication of PGM-Free catalyst MEA cannot simply copy the method of making PGM MEA. We proposed a novel method of fabricating PGM-Free catalyst MEA, so that the intrinsic catalyst activity from RDE can be translated into MEA performance. The method is based on the catalyst coated membrane (CCM) method using optimized ionomer to carbon (I/C) ratio and solvent mixture of catalyst ink. Using this method, the PGM-free catalyst MEA achieved the current density 44.9 mA cm-2 at 0.9 V iR-free in H2/O2 and 150 mA cm-2 at 0.8 V in H2/air, which surpassed the performance targets of US Department of Energy (DOE)for PGM-Free catalyst MEA. The property (solvent composition, dispersion of catalyst and ionomer in an ink), structure (pore structure) and the MEA performance have been characterized using, mercury intrusion porosimetry (MIP), MEA testing. A property-structure-performance relationship has been established.

Original languageEnglish
Title of host publication240th ECS Meeting - Polymer Electrolyte Fuel Cells and Electrolyzers 21 (PEFC and E 21)
PublisherIOP Publishing Ltd
Pages327-333
Number of pages7
Edition8
ISBN (Electronic)9781607685395
DOIs
StatePublished - 2021
Event240th ECS Meeting - Orlando, United States
Duration: Oct 10 2021Oct 14 2021

Publication series

NameECS Transactions
Number8
Volume104
ISSN (Print)1938-6737
ISSN (Electronic)1938-5862

Conference

Conference240th ECS Meeting
Country/TerritoryUnited States
CityOrlando
Period10/10/2110/14/21

Fingerprint

Dive into the research topics of 'Effects of Ink Formulation on the Structure and Performance of PGM-Free Catalyst Layer in PEMFCs'. Together they form a unique fingerprint.

Cite this