Abstract
Lignocellulosic biomass has been well-acknowledged as a filler for making 3D printed composites. The technical performances of composites were influenced by the characteristics of the components. The correlations between poplar biomass properties and the mechanical and thermal performances of the 3D printed poplar-plastic composites were investigated. The characteristics of poplar were modified by different pretreatment methods, including using hot water, dilute acid, and organic solvent (organosolv), and each treated poplar biomass was applied as a filler in a polylactic acid (PLA) polymer matrix to produce eco-friendly materials. These solvent pretreatments increased the hydrophobicity and surface area of poplar. Organosolv treated poplar showed the highest cellulose content and significantly increased Young's modulus of its biocomposites. Principal component analysis revealed that the specific surface area and water contact angle of biomass contributed to the thermal stability of biocomposites. Additionally, the degree of polymerization of cellulose and xylan content within the biomass correlated with the biocomposites' break stress. Notably, the crystallinity of biocomposites impacted the modulus of these materials. The reported relationships between biomass characteristics and 3D printed composite behaviors provide guidance for optimizing biomass processing in biocomposite applications.
| Original language | English |
|---|---|
| Pages (from-to) | 4478-4491 |
| Number of pages | 14 |
| Journal | RSC Sustainability |
| Volume | 3 |
| Issue number | 10 |
| DOIs | |
| State | Published - Oct 1 2025 |
Funding
This study was supported by the Global Center for Sustainable Bioproducts with the National Science Foundation Office of International Science and Engineering (NSF OISE 2435227). This work was also funded, in part, by the Laboratory Directed Research and Development Program of Oak Ridge NationalLaboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-00OR22725. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, forUnited States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (https://energy.gov/downloads/doe-public-access-plan). The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.