Abstract
The recently concluded partnership for advancing combustion engines (PACE) was a US Department of Energy consortium involving multiple national laboratories focused on addressing key efficiency and emission barriers in light-duty engines. Generation of detailed experimental data and modeling capabilities to understand and predict cold-start behavior was a major pillar in this program. Cold-start, as defined by the time between first engine crank and three-way catalyst light-off, is responsible for a large percentage of NOx, unburned hydrocarbon, and particulate matter emissions in light-duty engines. Minimizing emissions during cold-start is a trade-off between achieving faster three-way catalyst light-off, and engine out emissions during that period. In this study, engine performance, emissions, and catalyst warmup potential were monitored while the engine was operated using a single direct injection (baseline case) as well as a two-way-equal-split direct injection strategy. These injection strategies were analyzed at a range of cold-start-operation relevant retarded spark timings of up to 25 degrees after top dead center of firing (dATDCf). A stoichiometric 2-bar NIMEP steady-state condition was used for all cases to simulate cold-start operation. Significant improvement in engine stability was observed with the two-way-split injection strategy at the retarded spark timings allowing for up to 2.5x increase in exhaust heat rate when engine operation is stability constrained. Similar fuel-loss-to-oil trends with exhaust heat rate were observed for both single and two-way-split injection strategies. However, the two-way split injection was observed to produce higher NOx emissions per unit exhaust heat rate. A single data point run with three-way-split direct injection at a very retarded spark-timing of 30 dATDCf pointed to further improvements in engine stability and reduction in fuel-loss-to-oil as compared to single injection strategy. Engine stability decreased as spark timing was initially retarded with a single injection but was observed to plateau and stabilize beyond spark timing of 10 dATDCf. For the two-way-split-injection strategy, retarding the start of injection (SOI) timing of the second injection led to a decrease in engine stability as well as an increase in soot emissions.
Original language | English |
---|---|
Journal | SAE Technical Papers |
DOIs | |
State | Published - Apr 11 2023 |
Event | SAE 2023 World Congress Experience, WCX 2023 - Detroit, United States Duration: Apr 18 2023 → Apr 20 2023 |
Funding
This research was conducted as part of the Partnership to Advance Combustion Engines (PACE) Consortium sponsored by the U.S. Department of Energy (DOE) Vehicle Technologies Office (VTO). The PACE Consortium is a collaborative project of multiple National Laboratories that combines unique experiments with world-class DOE computing and machine learning expertise to speed discovery of knowledge, improve engine design tools, and enable market-competitive powertrain solutions with potential for best-in-class lifecycle emissions. A special thanks to DOE VTO program managers Mike Weismiller and Gurpreet Singh.