Effect of short-term weather predictions on model predictive trajectory tracking performance of unmanned surface vessels

Benjamin Armentor, Joseph Stevens, Nathan Madsen, Andrew Durand, Joshua Vaughan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

For mobile robots, such as Autonomous Surface Vessels (ASVs), limiting error from a target trajectory is necessary for effective and safe operation. This can be difficult when subjected to environmental disturbances like wind, waves, and currents. This work compares the tracking performance of an ASV using a Model Predictive Controller that includes a model of these disturbances. Two disturbance models are compared. One prediction model assumes the current disturbance measurements are constant over the entire prediction horizon. The other uses a statistical model of the disturbances over the prediction horizon. The Model Predictive Controller performance is also compared to a PI-controlled system under the same disturbance conditions. Including a disturbance model in the prediction of the dynamics decreases the trajectory tracking error over the entire disturbance spectrum, especially for longer horizon lengths.

Original languageEnglish
Title of host publicationIntelligent Transportation/Vehicles; Manufacturing; Mechatronics; Engine/After-Treatment Systems; Soft Actuators/Manipulators; Modeling/Validation; Motion/Vibration Control Applications; Multi-Agent/Networked Systems; Path Planning/Motion Control; Renewable/Smart Energy Systems; Security/Privacy of Cyber-Physical Systems; Sensors/Actuators; Tracking Control Systems; Unmanned Ground/Aerial Vehicles; Vehicle Dynamics, Estimation, Control; Vibration/Control Systems; Vibrations
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791884287
DOIs
StatePublished - 2020
Externally publishedYes
EventASME 2020 Dynamic Systems and Control Conference, DSCC 2020 - Virtual, Online
Duration: Oct 5 2020Oct 7 2020

Publication series

NameASME 2020 Dynamic Systems and Control Conference, DSCC 2020
Volume2

Conference

ConferenceASME 2020 Dynamic Systems and Control Conference, DSCC 2020
CityVirtual, Online
Period10/5/2010/7/20

Fingerprint

Dive into the research topics of 'Effect of short-term weather predictions on model predictive trajectory tracking performance of unmanned surface vessels'. Together they form a unique fingerprint.

Cite this