Effect of shape of quantum dots on strains: A finite element study

Research output: Contribution to journalConference articlepeer-review

Abstract

It is fairly well established that self-aligned quantum dots can form in strained epitaxial systems. One system that has been studied extensively is the InAs/GaAs system wherein the difference in lattice parameter is about 7.0%. Strains within the dot and the surroundings are known to influence the optical properties of the system. However, very little information is available on the strains in these quantum dots. In particular, the effect of shape of the initial shape of quantum dots and boundary conditions are not very well known. Strains in InAs quantum dots embedded in GaAs have been examined using the finite element method within a thermo-mechanical framework. The initial shape of the dot is assumed to be conical in 3-D with different width/height ratio typical of quantum dots. Modeling is accomplished using a 2-D axi-symmetric finite element model. Results of the simulation show that initially conical shaped dots become more rounded in shape and become lens-shaped. It has been shown that the width/height ratio is critical in determining the strains within the quantum dots. Results of the calculation are compared with the results of other calculations and experimental measurements of strains using the STM.

Original languageEnglish
Pages (from-to)153-160
Number of pages8
JournalProceedings of SPIE - The International Society for Optical Engineering
Volume3899
DOIs
StatePublished - 1999
Externally publishedYes
EventProceedings of the 1999 Photonics Technology into the 21st Century: Semiconductors, Microstructures, and Nanostructures - Singapore, Singapore
Duration: Dec 1 1999Dec 3 1999

Fingerprint

Dive into the research topics of 'Effect of shape of quantum dots on strains: A finite element study'. Together they form a unique fingerprint.

Cite this