Effect of premixed fuel preparation for partially premixed combustion with a low octane gasoline on a light-duty multicylinder compression ignition engine

Adam Dempsey, Robert Wagner, Scott Curran, William Cannella

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

Gasoline compression ignition concepts with the majority of the fuel being introduced early in the cycle are known as partially premixed combustion (PPC). Previous research on single- and multi-cylinder engines has shown that PPC has the potential for high thermal efficiency with low NOx and soot emissions. A variety of fuel injection strategies has been proposed in the literature. These injection strategies aim to create a partially stratified charge to simultaneously reduce NOx and soot emissions while maintaining some level of control over the combustion process through the fuel delivery system. The impact of the direct injection strategy to create a premixed charge of fuel and air has not previously been explored, and its impact on engine efficiency and emissions is not well understood. This paper explores the effect of sweeping the direct injected pilot timing from -91° to -324° ATDC, which is just after the exhaust valve closes for the engine used in this study. During the sweep, the pilot injection consistently contained 65% of the total fuel (based on command duration ratio), and the main injection timing was adjusted slightly to maintain combustion phasing near top dead center. A modern four cylinder, 1.9 L diesel engine with a variable geometry turbocharger, high pressure common rail injection system, wide included angle injectors, and variable swirl actuation was used in this study. The pistons were modified to an open bowl configuration suitable for highly premixed combustion modes. The stock diesel injection system was unmodified, and the gasoline fuel was doped with a lubricity additive to protect the high pressure fuel pump and the injectors. The study was conducted at a fixed speed/load condition of 2000 rpm and 4.0 bar brake mean effective pressure (BMEP). The pilot injection timing sweep was conducted at different intake manifold pressures, swirl levels, and fuel injection pressures. The gasoline used in this study has relatively high fuel reactivity with a research octane number of 68. The results of this experimental campaign indicate that the highest brake thermal efficiency and lowest emissions are achieved simultaneously with the earliest pilot injection timings (i.e., during the intake stroke).

Original languageEnglish
Title of host publicationLarge Bore Engines; Fuels; Advanced Combustion; Emissions Control Systems
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791846162
DOIs
StatePublished - 2014
EventASME 2014 Internal Combustion Engine Division Fall Technical Conference, ICEF 2014 - Columbus, United States
Duration: Oct 19 2014Oct 22 2014

Publication series

NameASME 2014 Internal Combustion Engine Division Fall Technical Conference, ICEF 2014
Volume1

Conference

ConferenceASME 2014 Internal Combustion Engine Division Fall Technical Conference, ICEF 2014
Country/TerritoryUnited States
CityColumbus
Period10/19/1410/22/14

Fingerprint

Dive into the research topics of 'Effect of premixed fuel preparation for partially premixed combustion with a low octane gasoline on a light-duty multicylinder compression ignition engine'. Together they form a unique fingerprint.

Cite this