Abstract
Tensile properties of unidirectionally reinforced Hi-Nicalon™ Type S SiC fiber, chemically vapor-infiltrated (CVI) SiC-matrix composites, with either pyrolytic carbon (PyC) or multilayered PyC/SiC interphase, were characterized following neutron irradiations to the maximum fluence of 7.7 × 1025 n/m2 at 380 and 800 °C. The stress-strain behavior of the multilayered interphase composites remained unmodified after irradiation. The PyC interphase composite increased in ultimate tensile stress and strain to failure following neutron irradiation, whereas the proportional limit stress exhibited a slight decrease. Potential mechanisms for these changes include accommodation of misfit stress through irradiation creep, reduced interfacial friction, and differential swelling among individual composite constituents.
Original language | English |
---|---|
Pages (from-to) | 774-779 |
Number of pages | 6 |
Journal | Journal of Nuclear Materials |
Volume | 367-370 A |
Issue number | SPEC. ISS. |
DOIs | |
State | Published - Aug 1 2007 |
Funding
This research was sponsored by the Office of Fusion Energy Sciences, US Department of Energy under contract DE-AC05-00OR22725 with UT-Battelle, LLC.
Funders | Funder number |
---|---|
U.S. Department of Energy | DE-AC05-00OR22725 |
Fusion Energy Sciences |