Abstract
The fundamental principles that govern antiferroelectric (AFE)-ferroelectric (FE) transitions are not well understood for many solid solutions of perovskite compounds. For example, crystal chemical considerations based on the average Goldschmidt tolerance factor or ionic polarizability do not precisely predict the boundary between the AFE and FE phases in dilute solid solutions of alkali niobates, such as KxNa1-xNbO3(x ≤ 0.02). Here, based on detailed structural analysis from neutron total scattering experiments, we provide insights about how the relative local distortions around the A- and B-sites of the ABO3perovskite structure affect the AFE/FE order of the average crystallographic phases in KxNa1-xNbO3. We show that a higher (lower) ratio of B-site-centered distortions over A-site-centered distortions drives transition toward a long-range FE (AFE) phase, which is based on a competition between the long-range polarizing field of the Nb-O dipoles and the disordering effect of local distortions around the A-site. Our study provides a predictive tool for designing complex solid-solution perovskites with tunable (anti)ferroelectric polarization properties, which can be of interest for various energy-related applications such as high-density energy storage and solid-state cooling. copy; 2022 American Chemical Society.
Original language | English |
---|---|
Pages (from-to) | 20277-20287 |
Number of pages | 11 |
Journal | Inorganic Chemistry |
Volume | 61 |
Issue number | 50 |
DOIs | |
State | Published - Dec 19 2022 |
Funding
The work described in this paper was partially supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (project no. CityU 11306720). F.P.M. and M.R.V.J. thank the Danish Agency for Science, Technology, and Innovation for funding the instrument center DanScatt. Affiliation with the Center for Integrated Materials Research (iMAT) at Aarhus University is gratefully acknowledged. A portion of this research used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory (IPTS-27376 for POWGEN and NOMAD experiments).