Effect of hydrocarbon emissions from PCCI-type combustion on the performance of selective catalytic reduction catalysts

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

Core samples cut from full size commercial Fe-and Cu-zeolite SCR catalysts were exposed to a slipstream of raw engine exhaust from a 1.9-liter 4-cylinder diesel engine operating in conventional and PCCI combustion modes. Subsequently, the NOx reduction performance of the exposed catalysts was evaluated on a laboratory bench-reactor fed with simulated exhaust. The Fe-zeolite NOx conversion efficiency was significantly degraded, especially at low temperatures (<250°C), after the catalyst was exposed to the engine exhaust. The degradation of the Fe-zeolite performance was similar for both combustion modes. The Cu-zeolite was much more resistant to HC fouling than the Fe-zeolite catalyst. In the case of the Cu-zeolite, PCCI exhaust had a more significant impact than the exhaust from conventional combustion on the NOx conversion efficiency. For all cases, the clean catalyst performance was recovered after heating to 600°C. GC-MS analysis of the HCs adsorbed to the catalyst surface provided insights into the observed NOx reduction performance trends.

Original languageEnglish
Title of host publicationASME 2011 Internal Combustion Engine Division Fall Technical Conference, ICEF 2011
Pages643-649
Number of pages7
DOIs
StatePublished - 2011
EventASME 2011 Internal Combustion Engine Division Fall Technical Conference, ICEF 2011 - Morgantown, WV, United States
Duration: Oct 2 2011Oct 5 2011

Publication series

NameAmerican Society of Mechanical Engineers, Internal Combustion Engine Division (Publication) ICE
ISSN (Print)1066-5048

Conference

ConferenceASME 2011 Internal Combustion Engine Division Fall Technical Conference, ICEF 2011
Country/TerritoryUnited States
CityMorgantown, WV
Period10/2/1110/5/11

Fingerprint

Dive into the research topics of 'Effect of hydrocarbon emissions from PCCI-type combustion on the performance of selective catalytic reduction catalysts'. Together they form a unique fingerprint.

Cite this