TY - GEN
T1 - Effect of hydrocarbon emissions from PCCI-type combustion on the performance of selective catalytic reduction catalysts
AU - Prikhodko, Vitaly Y.
AU - Pihl, Josh A.
AU - Lewis, Samuel A.
AU - Parks, James E.
PY - 2011
Y1 - 2011
N2 - Core samples cut from full size commercial Fe-and Cu-zeolite SCR catalysts were exposed to a slipstream of raw engine exhaust from a 1.9-liter 4-cylinder diesel engine operating in conventional and PCCI combustion modes. Subsequently, the NOx reduction performance of the exposed catalysts was evaluated on a laboratory bench-reactor fed with simulated exhaust. The Fe-zeolite NOx conversion efficiency was significantly degraded, especially at low temperatures (<250°C), after the catalyst was exposed to the engine exhaust. The degradation of the Fe-zeolite performance was similar for both combustion modes. The Cu-zeolite was much more resistant to HC fouling than the Fe-zeolite catalyst. In the case of the Cu-zeolite, PCCI exhaust had a more significant impact than the exhaust from conventional combustion on the NOx conversion efficiency. For all cases, the clean catalyst performance was recovered after heating to 600°C. GC-MS analysis of the HCs adsorbed to the catalyst surface provided insights into the observed NOx reduction performance trends.
AB - Core samples cut from full size commercial Fe-and Cu-zeolite SCR catalysts were exposed to a slipstream of raw engine exhaust from a 1.9-liter 4-cylinder diesel engine operating in conventional and PCCI combustion modes. Subsequently, the NOx reduction performance of the exposed catalysts was evaluated on a laboratory bench-reactor fed with simulated exhaust. The Fe-zeolite NOx conversion efficiency was significantly degraded, especially at low temperatures (<250°C), after the catalyst was exposed to the engine exhaust. The degradation of the Fe-zeolite performance was similar for both combustion modes. The Cu-zeolite was much more resistant to HC fouling than the Fe-zeolite catalyst. In the case of the Cu-zeolite, PCCI exhaust had a more significant impact than the exhaust from conventional combustion on the NOx conversion efficiency. For all cases, the clean catalyst performance was recovered after heating to 600°C. GC-MS analysis of the HCs adsorbed to the catalyst surface provided insights into the observed NOx reduction performance trends.
UR - http://www.scopus.com/inward/record.url?scp=84862524647&partnerID=8YFLogxK
U2 - 10.1115/ICEF2011-60129
DO - 10.1115/ICEF2011-60129
M3 - Conference contribution
AN - SCOPUS:84862524647
SN - 9780791844427
T3 - American Society of Mechanical Engineers, Internal Combustion Engine Division (Publication) ICE
SP - 643
EP - 649
BT - ASME 2011 Internal Combustion Engine Division Fall Technical Conference, ICEF 2011
T2 - ASME 2011 Internal Combustion Engine Division Fall Technical Conference, ICEF 2011
Y2 - 2 October 2011 through 5 October 2011
ER -