TY - GEN
T1 - EFFECT OF CUTTING-EDGE GEOMETRY AND WORKPIECE HARDNESS ON SURFACE RESIDUAL STRESSES IN FINISH HARD TURNING OF AISI 52100 STEEL
AU - Thiele, Jeffrey D.
AU - Melkote, Shreyes N.
AU - Peascoe, Roberta A.
AU - Watkins, Thomas R.
N1 - Publisher Copyright:
© 1999 American Society of Mechanical Engineers (ASME). All rights reserved.
PY - 1999
Y1 - 1999
N2 - An experimental investigation was conducted to determine the effects of tool cutting-edge geometry and workpiece hardness on surface residual stresses for finish hard turning of through-hardened AISI 52100 steel. Polycrystalline cubic boron nitride (PCBN) inserts with representative types of edge geometry including "up-sharp" edges, edge hones, and chamfers, were used as the cutting tools in this study. This study shows that tool edge geometry is highly influential with respect to surface residual stresses, which were measured using x-ray diffraction. In general, compressive surface residual stresses in the axial and circumferential directions were generated by large edge hone tools, for longitudinal turning operations. Residual stresses in the axial and circumferential directions generated by small edge hone tools are typically more tensile than stresses produced by large edge hone tools. Microstructural analysis shows that thermal effects are significant at high feed rates, based on the presence of phase changes on the workpiece surface. At high feed rates, compressive stresses correlate with continuous white layers and tensile stresses correlate with over-tempered regions on the surface of the workpiece. Mechanical effects play a larger role at low feed rates, where phase changes are not observed to a significant degree. For these cases, large edge hone tools generally produce more compressive values of residual stress than small edge hone tools.
AB - An experimental investigation was conducted to determine the effects of tool cutting-edge geometry and workpiece hardness on surface residual stresses for finish hard turning of through-hardened AISI 52100 steel. Polycrystalline cubic boron nitride (PCBN) inserts with representative types of edge geometry including "up-sharp" edges, edge hones, and chamfers, were used as the cutting tools in this study. This study shows that tool edge geometry is highly influential with respect to surface residual stresses, which were measured using x-ray diffraction. In general, compressive surface residual stresses in the axial and circumferential directions were generated by large edge hone tools, for longitudinal turning operations. Residual stresses in the axial and circumferential directions generated by small edge hone tools are typically more tensile than stresses produced by large edge hone tools. Microstructural analysis shows that thermal effects are significant at high feed rates, based on the presence of phase changes on the workpiece surface. At high feed rates, compressive stresses correlate with continuous white layers and tensile stresses correlate with over-tempered regions on the surface of the workpiece. Mechanical effects play a larger role at low feed rates, where phase changes are not observed to a significant degree. For these cases, large edge hone tools generally produce more compressive values of residual stress than small edge hone tools.
UR - http://www.scopus.com/inward/record.url?scp=85122766931&partnerID=8YFLogxK
U2 - 10.1115/IMECE1999-0743
DO - 10.1115/IMECE1999-0743
M3 - Conference contribution
AN - SCOPUS:85122766931
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
SP - 797
EP - 805
BT - Manufacturing Science and Engineering
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 1999 International Mechanical Engineering Congress and Exposition, IMECE 1999
Y2 - 14 November 1999 through 19 November 1999
ER -