TY - JOUR
T1 - Effect of correlation on viscosity and diffusion in molecular-dynamics simulations
AU - Meyer, Edmund R.
AU - Kress, Joel D.
AU - Collins, Lee A.
AU - Ticknor, Christopher
N1 - Publisher Copyright:
© 2014 American Physical Society.
PY - 2014/10/6
Y1 - 2014/10/6
N2 - In the warm dense matter (WDM) regime, material properties like diffusion and viscosity can be obtained from lengthy quantum molecular dynamics simulations, where the quantum behavior of the electrons is represented using either Kohn-Sham or orbital-free density functional theory. To reduce the simulation duration, we fit the time dependence of the autocorrelation functions (ACFs) and then use the fit to find values of the diffusion and viscosity. This fitting procedure avoids noise in the long time behavior of the ACFs. We present a detailed analysis of the functional form used to fit the ACFs, which is always a more efficient means to obtain mass transport properties. We use the fits to estimate the statistical error of the transport properties. We apply this methodology to a dense correlated plasma of copper and a mixture of carbon and hydrogen. Both systems show structure in their ACFs and exhibit multiple time scales. The mixture contains different structural forms of the ACFs for each component in the mixture.
AB - In the warm dense matter (WDM) regime, material properties like diffusion and viscosity can be obtained from lengthy quantum molecular dynamics simulations, where the quantum behavior of the electrons is represented using either Kohn-Sham or orbital-free density functional theory. To reduce the simulation duration, we fit the time dependence of the autocorrelation functions (ACFs) and then use the fit to find values of the diffusion and viscosity. This fitting procedure avoids noise in the long time behavior of the ACFs. We present a detailed analysis of the functional form used to fit the ACFs, which is always a more efficient means to obtain mass transport properties. We use the fits to estimate the statistical error of the transport properties. We apply this methodology to a dense correlated plasma of copper and a mixture of carbon and hydrogen. Both systems show structure in their ACFs and exhibit multiple time scales. The mixture contains different structural forms of the ACFs for each component in the mixture.
UR - http://www.scopus.com/inward/record.url?scp=84907855065&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.90.043101
DO - 10.1103/PhysRevE.90.043101
M3 - Article
AN - SCOPUS:84907855065
SN - 1539-3755
VL - 90
JO - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
IS - 4
M1 - 043101
ER -