Abstract
We present in this work a consistent numerical scheme that allows the computation of 3D magnetic fields a nd 3D density profiles and their usage in ion cyclotron range of frequencies (ICRF) coupling simulations. We first utilize the PARVMEC code to compute the 3D free-boundary plasma equilibrium in the ideal magnetohydrodynamic (MHD) approximation. Since the PARVMEC solution is only defined within the last closed flux surface (LCFS), the magnetic field domain is extended to the scrape-offlayer (SOL) via the BMW code, which computes a divergence-free magnetic field solution a rising from the external conductors’ vacuum field and the PARVMEC flux surface currents. This magnetic reconstruction is then used in the EMC3-EIRENE transport code in order to compute 3D density profiles. In the last step, the RAPLICASOL code is utilized to compute the ICRF antenna S-matrices resulting from the 3D density profiles. We exemplify this scheme for the ASDEX Upgrade tokamak. A new implementation of a curved model for the ASDEX Upgrade ICRF 2-strap antenna in RAPLICASOL allows simulations in realistic geometry, without any coordinate transformations.
Original language | English |
---|---|
Title of host publication | 23rd Topical Conference on Radiofrequency Power in Plasmas |
Editors | Paul T. Bonoli, Robert I. Pinsker, Xiaojie Wang |
Publisher | American Institute of Physics Inc. |
ISBN (Electronic) | 9780735420137 |
DOIs | |
State | Published - Sep 16 2020 |
Event | 23rd Topical Conference on Radiofrequency Power in Plasmas - Hefei, China Duration: May 14 2019 → May 17 2019 |
Publication series
Name | AIP Conference Proceedings |
---|---|
Volume | 2254 |
ISSN (Print) | 0094-243X |
ISSN (Electronic) | 1551-7616 |
Conference
Conference | 23rd Topical Conference on Radiofrequency Power in Plasmas |
---|---|
Country/Territory | China |
City | Hefei |
Period | 05/14/19 → 05/17/19 |
Funding
This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training program 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.