TY - JOUR
T1 - Dynamics, Stability, and Adsorption States of Water on Oxidized RuO2(110)
AU - Nguyen, Manh Thuong
AU - Mu, Rentao
AU - Cantu, David C.
AU - Lyubinetsky, Igor
AU - Glezakou, Vassiliki Alexandra
AU - Dohnálek, Zdenek
AU - Rousseau, Roger
N1 - Publisher Copyright:
© 2017 American Chemical Society.
PY - 2017/8/31
Y1 - 2017/8/31
N2 - Identifying and understanding how excess oxygen atoms affect the adsorption of water on metal oxides is crucial for their use in water splitting. Here, by means of high-resolution scanning tunneling microscopy and density-functional calculations, we show that excess oxygen atoms on the stoichiometric RuO2(110) significantly change the clustering, conformation, and deprotonation equilibrium of adsorbed water. We considered two reactive scenarios during which the stoichiometric surface was exposed (i) first to oxygen, followed by water, and (ii) first to water, followed by oxygen. In both cases, the [OH-OH] complex on Ru rows is the dominant species, showing a significant difference from water-only adsorption on the stoichiometric surface in which the [OH-H2O] species is found to be prevalent. Surface reactivity at almost full O coverage is also addressed; there we show that site selectivity of the surface for H adsorption and dissociation of H2O is hindered, notwithstanding the increase of the dynamic motion of both species. We found that the work function of RuO2 can serve as a descriptor for the reactivity of this surface to water and its constituents.
AB - Identifying and understanding how excess oxygen atoms affect the adsorption of water on metal oxides is crucial for their use in water splitting. Here, by means of high-resolution scanning tunneling microscopy and density-functional calculations, we show that excess oxygen atoms on the stoichiometric RuO2(110) significantly change the clustering, conformation, and deprotonation equilibrium of adsorbed water. We considered two reactive scenarios during which the stoichiometric surface was exposed (i) first to oxygen, followed by water, and (ii) first to water, followed by oxygen. In both cases, the [OH-OH] complex on Ru rows is the dominant species, showing a significant difference from water-only adsorption on the stoichiometric surface in which the [OH-H2O] species is found to be prevalent. Surface reactivity at almost full O coverage is also addressed; there we show that site selectivity of the surface for H adsorption and dissociation of H2O is hindered, notwithstanding the increase of the dynamic motion of both species. We found that the work function of RuO2 can serve as a descriptor for the reactivity of this surface to water and its constituents.
UR - http://www.scopus.com/inward/record.url?scp=85028651870&partnerID=8YFLogxK
U2 - 10.1021/acs.jpcc.7b03280
DO - 10.1021/acs.jpcc.7b03280
M3 - Article
AN - SCOPUS:85028651870
SN - 1932-7447
VL - 121
SP - 18505
EP - 18515
JO - Journal of Physical Chemistry C
JF - Journal of Physical Chemistry C
IS - 34
ER -