Abstract
A quasielastic neutron scattering experiment has revealed the dynamics of surface water in a high surface area zirconium oxide in the temperature range of 300-360 K. The characteristic times of the rotational (picoseconds) and translational (tens of picoseconds) components of diffusion motion are well separated. The rotational correlation time shows an Arrhenius-type behavior with an activation energy of 4.48 kJ/mol, which is lower compared to bulk water. The rotational diffusion at room temperature is slower by about a factor of 2 compared to bulk water, whereas the translational diffusion slows down by a factor of 40. In contrast to bulk water, the translational correlation time exhibits an Arrhenius-type temperature dependence with an activation energy of 11.38 kJ/mol. Comparison of different models for jump diffusion processes suggests that water molecules perform two-dimensional jumps at a well-defined, almost temperature-independent distance of 4.21-4.32 Å. Such a large jump distance indicates a low molecular density of the layer of diffusing molecules. We argue that undissociated water molecules on an average form two hydrations layers on top of the surface layer of hydroxyl groups, and all the layers have similar molecular density. Quasielastic neutron scattering experiment assesses the dynamics of the outermost hydration layer, whereas slower motion of the water molecules in the inner hydration layer contributes to the elastic signal.
Original language | English |
---|---|
Pages (from-to) | 9087-9097 |
Number of pages | 11 |
Journal | Journal of Chemical Physics |
Volume | 121 |
Issue number | 18 |
DOIs | |
State | Published - Nov 8 2004 |
Externally published | Yes |