Abstract
When a heteroepitaxial film is grown on a vicinal substrate, the terrace steps at the growth front may bunch together to relieve strain, resulting in a rough surface. On the other hand, proper manipulation of the growth kinetics may suppress the inherent bunching instability, thus preserving step-flow growth. Here we show that the step dynamics in the early stages of growth can already determine whether the bunching instability is truly suppressed, prior to bunching actually taking place in the unstable regime. We determine the critical film thickness above which steps will bunch and exploit its scaling properties and usefulness for extracting intrinsic energy parameters. Experimental studies of SrRuO3 films grown on vicinal SrTiO3 substrates clearly establish the existence of the critical film thickness in step bunching.
Original language | English |
---|---|
Article number | 055503 |
Journal | Physical Review Letters |
Volume | 99 |
Issue number | 5 |
DOIs | |
State | Published - Aug 3 2007 |