Abstract
Conformational changes of the pyrophosphate (Pp)-functionalized uranyl peroxide nanocluster [(UO2)24(O2)24(P2O7)12]48- ({U24Pp12}), dissolved as a Li/Na salt, can be induced by the titration of alkali cations into solution. The most symmetric conformer of the molecule has idealized octahedral (Oh) molecular symmetry. One-dimensional 31P NMR experiments provide direct evidence that both K+ and Rb+ ions trigger an Oh-to-D4h conformational change within {U24Pp12}. Variable-temperature 31P NMR experiments conducted on partially titrated {U24Pp12} systems show an effect on the rates; increased activation enthalpy and entropy for the D4h-to-Oh transition is observed in the presence of Rb+ compared to K+. Two-dimensional, exchange spectroscopy 31P NMR revealed that magnetization transfer links chemically unique Pp bridges that are present in the D4h conformation and that this magnetization transfer occurs via a conformational rearrangement mechanism as the bridges interconvert between two symmetries. The interconversion is triggered by the departure and reentry of K (or Rb) cations out of and into the cavity of the cluster. This rearrangement allows Pp bridges to interconvert without the need to break bonds. Cs ions exhibit unique interactions with {U24Pp12} clusters and cause only minor changes in the solution 31P NMR signatures, suggesting that Oh symmetry is conserved. Single-crystal X-ray diffraction measurements reveal that the mixed Li/Na/Cs salt adopts D2h molecular symmetry, implying that while solvated, this cluster is in equilibrium with a more symmetric form. These results highlight the unusually flexible nature of the actinide-based {U24Pp12} and its sensitivity to countercations in solution.
Original language | English |
---|---|
Pages (from-to) | 2495-2502 |
Number of pages | 8 |
Journal | Inorganic Chemistry |
Volume | 59 |
Issue number | 4 |
DOIs | |
State | Published - Feb 17 2020 |
Externally published | Yes |
Funding
This material is based upon work supported as a part of the Materials Science of Actinides Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award DE-SC0001089. NMR measurements were conducted at the Magnetic Resonance Research Center at the University of Notre Dame.