Abstract
We have used both the backscattering (HFBS) and time-of-flight (DCS) neutron spectrometers to investigate proton dynamics in ammonia borane, a compound of intense interest as a model for 'chemical hydrogen storage' materials. Results indicate that the deposition of ammonia borane on a mesoporous silicate results in longer proton residence times and lower energy barriers for proton motion compared to bulk ammonia borane. The reduced activation energy for proton motions may partly explain the improved thermolysis and lowering the activation barrier for the loss of the first equivalent of H2. In addition, the phonon density of states for neat ammonia borane compares well with other spectroscopic results, with the intense peak at 22 meV assigned to the librational NH3 and BH3 modes, whereas ammonia borane on MCM-41 displays a broad, featureless spectrum indicating a poorly crystalline material.
Original language | English |
---|---|
Pages (from-to) | 266-268 |
Number of pages | 3 |
Journal | Physica B: Physics of Condensed Matter |
Volume | 385-386 I |
DOIs | |
State | Published - Nov 27 2006 |
Externally published | Yes |
Funding
C.M.B. and T.L.J. thank the NIST Summer Undergraduate Research Fellowship program, the NCNR, Terrence Udovic, Juscelino Leão and Brian Toby for their support and help. The National Science Foundation (DMR-0086210) supported work performed at the NCNR.
Funders | Funder number |
---|---|
National Science Foundation | DMR-0086210 |
National Institute of Standards and Technology | |
NIST Center for Neutron Research |
Keywords
- Backscattering
- Dynamics
- Hydrogen storage
- Neutron
- Quasielastic scattering