Dynamic restructuring of supported metal nanoparticles and its implications for structure insensitive catalysis

Charlotte Vogt, Florian Meirer, Matteo Monai, Esther Groeneveld, Davide Ferri, Rutger A. van Santen, Maarten Nachtegaal, Raymond R. Unocic, Anatoly I. Frenkel, Bert M. Weckhuysen

Research output: Contribution to journalArticlepeer-review

54 Scopus citations

Abstract

Some fundamental concepts of catalysis are not fully explained but are of paramount importance for the development of improved catalysts. An example is the concept of structure insensitive reactions, where surface-normalized activity does not change with catalyst metal particle size. Here we explore this concept and its relation to surface reconstruction on a set of silica-supported Ni metal nanoparticles (mean particle sizes 1–6 nm) by spectroscopically discerning a structure sensitive (CO2 hydrogenation) from a structure insensitive (ethene hydrogenation) reaction. Using state-of-the-art techniques, inter alia in-situ STEM, and quick-X-ray absorption spectroscopy with sub-second time resolution, we have observed particle-size-dependent effects like restructuring which increases with increasing particle size, and faster restructuring for larger particle sizes during ethene hydrogenation while for CO2 no such restructuring effects were observed. Furthermore, a degree of restructuring is irreversible, and we also show that the rate of carbon diffusion on, and into nanoparticles increases with particle size. We finally show that these particle size-dependent effects induced by ethene hydrogenation, can make a structure sensitive reaction (CO2 hydrogenation), structure insensitive. We thus postulate that structure insensitive reactions are actually apparently structure insensitive, which changes our fundamental understanding of the empirical observation of structure insensitivity.

Original languageEnglish
Article number7096
JournalNature Communications
Volume12
Issue number1
DOIs
StatePublished - Dec 2021

Funding

The authors thank NWO and BASF for a TA-CHIPP grant. B.M.W. also thanks NWO for a Gravitation program (Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC)) and ARC-CBBC for research funding. A.I.F. acknowledges support of the U.S. DOE BES Grant No. DE-SC0022199. C. V. acknowledges support of a Niels Stensen Fellowship. Roeland Dijkema, Vincent Laban, Aaike van Vugt and Tobias Pfeiffer of VSParticle are thanked for their help to prepare in-situ TEM samples via spark ablation. Alicja Kahlan (UU) is thanked for help in measuring FT-IR in ethene hydrogenation experiments. Florian Zand (UU) is thanked for help in the sample preparation.

Fingerprint

Dive into the research topics of 'Dynamic restructuring of supported metal nanoparticles and its implications for structure insensitive catalysis'. Together they form a unique fingerprint.

Cite this