TY - JOUR
T1 - Dynamic heterogeneities, boson peak, and activation volume in glass-forming liquids
AU - Hong, L.
AU - Novikov, V. N.
AU - Sokolov, A. P.
PY - 2011/6/30
Y1 - 2011/6/30
N2 - There are various arguments and models connecting the characteristic length associated with the boson peak vibrations ξ to the length scale of dynamical heterogeneity Lhet. ξ is usually defined as the ratio of the transverse sound velocity to the boson peak frequency. Here we present pressure, temperature, and molecular weight dependencies of ξ, estimated using light scattering, in a few molecular and polymeric glass formers. These dependencies are compared with respective dependencies of the activation volume ΔV# in the same materials. Good agreement is found for the pressure and molecular weight dependencies of ξ and ΔV# measured at the glass transition temperature Tg. These results provide more evidence for a possible relationship between the sensitivity of structural relaxation to density (activation volume) and the heterogeneity volume. However, contrary to the expectations for Lhet, ξ does not decrease with temperature above Tg in most of the studied materials. The temperature dependence of ξ is compared to that of Lhet in glycerol and orthoterphenyl (OTP) estimated from literature data. The analysis shows a clear difference in the behavior of ξ(T) and ΔV#(T) at temperatures above Tg, although ΔV#(T)1/3 and Lhet(T) have similar temperature dependence. Possible reasons for the observed difference are discussed.
AB - There are various arguments and models connecting the characteristic length associated with the boson peak vibrations ξ to the length scale of dynamical heterogeneity Lhet. ξ is usually defined as the ratio of the transverse sound velocity to the boson peak frequency. Here we present pressure, temperature, and molecular weight dependencies of ξ, estimated using light scattering, in a few molecular and polymeric glass formers. These dependencies are compared with respective dependencies of the activation volume ΔV# in the same materials. Good agreement is found for the pressure and molecular weight dependencies of ξ and ΔV# measured at the glass transition temperature Tg. These results provide more evidence for a possible relationship between the sensitivity of structural relaxation to density (activation volume) and the heterogeneity volume. However, contrary to the expectations for Lhet, ξ does not decrease with temperature above Tg in most of the studied materials. The temperature dependence of ξ is compared to that of Lhet in glycerol and orthoterphenyl (OTP) estimated from literature data. The analysis shows a clear difference in the behavior of ξ(T) and ΔV#(T) at temperatures above Tg, although ΔV#(T)1/3 and Lhet(T) have similar temperature dependence. Possible reasons for the observed difference are discussed.
UR - http://www.scopus.com/inward/record.url?scp=79961049680&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.83.061508
DO - 10.1103/PhysRevE.83.061508
M3 - Article
AN - SCOPUS:79961049680
SN - 1539-3755
VL - 83
JO - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
IS - 6
M1 - 061508
ER -