Abstract
Wide area networking infrastructures (WANs), particularly science and research WANs, are the backbone for moving large volumes of scientific data between experimental facilities and data centers. With demands growing at exponential rates, these networks are struggling to cope with large data volumes, real-time responses, and overall network performance. Network operators are increasingly looking for innovative ways to manage the limited underlying network resources. Forecasting network traffic is a critical capability for proactive resource management, congestion mitigation, and dedicated transfer provisioning. To this end, we propose a nonautoregressive graph-based neural network for multistep network traffic forecasting. Specifically, we develop a dynamic variant of diffusion convolutional recurrent neural networks to forecast traffic in research WANs. We evaluate the efficacy of our approach on real traffic from ESnet, the U.S. Department of Energy's dedicated science network. Our results show that compared to classical forecasting methods, our approach explicitly learns the dynamic nature of spatiotemporal traffic patterns, showing significant improvements in forecasting accuracy. Our technique can surpass existing statistical and deep learning approaches by achieving ≈20% mean absolute percentage error for multiple hours of forecasts despite dynamic network traffic settings.
Original language | English |
---|---|
Title of host publication | Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020 |
Editors | Xintao Wu, Chris Jermaine, Li Xiong, Xiaohua Tony Hu, Olivera Kotevska, Siyuan Lu, Weijia Xu, Srinivas Aluru, Chengxiang Zhai, Eyhab Al-Masri, Zhiyuan Chen, Jeff Saltz |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9781728162515 |
DOIs | |
State | Published - Dec 10 2020 |
Externally published | Yes |
Event | 8th IEEE International Conference on Big Data, Big Data 2020 - Virtual, Atlanta, United States Duration: Dec 10 2020 → Dec 13 2020 |
Publication series
Name | Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020 |
---|---|
Volume | 2020-January |
Conference
Conference | 8th IEEE International Conference on Big Data, Big Data 2020 |
---|---|
Country/Territory | United States |
City | Virtual, Atlanta |
Period | 12/10/20 → 12/13/20 |
Funding
ACKNOWLEDGMENTS This work was supported by the U.S. Department of Energy, Office of Science Early Career Research Program for ‘Large-scale Deep Learning for Intelligent Networks’ Contract no FP00006145. This material is based upon work supported by the U.S. Department of Energy (DOE), Office of Science, Office of Advanced Scientific Computing Research, under Contract DE-AC02-06CH11357. This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility.