TY - GEN
T1 - Dynamic Graph Neural Network for Traffic Forecasting in Wide Area Networks
AU - Mallick, Tanwi
AU - Kiran, Mariam
AU - Mohammed, Bashir
AU - Balaprakash, Prasanna
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/12/10
Y1 - 2020/12/10
N2 - Wide area networking infrastructures (WANs), particularly science and research WANs, are the backbone for moving large volumes of scientific data between experimental facilities and data centers. With demands growing at exponential rates, these networks are struggling to cope with large data volumes, real-time responses, and overall network performance. Network operators are increasingly looking for innovative ways to manage the limited underlying network resources. Forecasting network traffic is a critical capability for proactive resource management, congestion mitigation, and dedicated transfer provisioning. To this end, we propose a nonautoregressive graph-based neural network for multistep network traffic forecasting. Specifically, we develop a dynamic variant of diffusion convolutional recurrent neural networks to forecast traffic in research WANs. We evaluate the efficacy of our approach on real traffic from ESnet, the U.S. Department of Energy's dedicated science network. Our results show that compared to classical forecasting methods, our approach explicitly learns the dynamic nature of spatiotemporal traffic patterns, showing significant improvements in forecasting accuracy. Our technique can surpass existing statistical and deep learning approaches by achieving ≈20% mean absolute percentage error for multiple hours of forecasts despite dynamic network traffic settings.
AB - Wide area networking infrastructures (WANs), particularly science and research WANs, are the backbone for moving large volumes of scientific data between experimental facilities and data centers. With demands growing at exponential rates, these networks are struggling to cope with large data volumes, real-time responses, and overall network performance. Network operators are increasingly looking for innovative ways to manage the limited underlying network resources. Forecasting network traffic is a critical capability for proactive resource management, congestion mitigation, and dedicated transfer provisioning. To this end, we propose a nonautoregressive graph-based neural network for multistep network traffic forecasting. Specifically, we develop a dynamic variant of diffusion convolutional recurrent neural networks to forecast traffic in research WANs. We evaluate the efficacy of our approach on real traffic from ESnet, the U.S. Department of Energy's dedicated science network. Our results show that compared to classical forecasting methods, our approach explicitly learns the dynamic nature of spatiotemporal traffic patterns, showing significant improvements in forecasting accuracy. Our technique can surpass existing statistical and deep learning approaches by achieving ≈20% mean absolute percentage error for multiple hours of forecasts despite dynamic network traffic settings.
UR - http://www.scopus.com/inward/record.url?scp=85113421926&partnerID=8YFLogxK
U2 - 10.1109/BigData50022.2020.9512748
DO - 10.1109/BigData50022.2020.9512748
M3 - Conference contribution
AN - SCOPUS:85113421926
T3 - Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020
BT - Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020
A2 - Wu, Xintao
A2 - Jermaine, Chris
A2 - Xiong, Li
A2 - Hu, Xiaohua Tony
A2 - Kotevska, Olivera
A2 - Lu, Siyuan
A2 - Xu, Weijia
A2 - Aluru, Srinivas
A2 - Zhai, Chengxiang
A2 - Al-Masri, Eyhab
A2 - Chen, Zhiyuan
A2 - Saltz, Jeff
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 8th IEEE International Conference on Big Data, Big Data 2020
Y2 - 10 December 2020 through 13 December 2020
ER -