DVSAI: Diverse View-Shared Anchors Based Incomplete Multi-View Clustering

Shengju Yu, Siwei Wang, Pei Zhang, Miao Wang, Ziming Wang, Zhe Liu, Liming Fang, En Zhu, Xinwang Liu

Research output: Contribution to journalConference articlepeer-review

9 Scopus citations

Abstract

In numerous real-world applications, it is quite common that sample information is partially available for some views due to machine breakdown or sensor failure, causing the problem of incomplete multi-view clustering (IMVC). While several IMVC approaches using view-shared anchors have successfully achieved pleasing performance improvement, (1) they generally construct anchors with only one dimension, which could deteriorate the multi-view diversity, bringing about serious information loss; (2) the constructed anchors are typically with a single size, which could not sufficiently characterize the distribution of the whole samples, leading to limited clustering performance. For generating view-shared anchors with multi-dimension and multi-size for IMVC, we design a novel framework called Diverse View-Shared Anchors based Incomplete multi-view clustering (DVSAI). Concretely, we associate each partial view with several potential spaces. In each space, we enable anchors to communicate among views and generate the view-shared anchors with space-specific dimension and size. Consequently, spaces with various scales make the generated view-shared anchors enjoy diverse dimensions and sizes. Subsequently, we devise an integration scheme with linear computational and memory expenditures to integrate the outputted multi-scale unified anchor graphs such that running spectral algorithm generates the spectral embedding. Afterwards, we theoretically demonstrate that DVSAI owns linear time and space costs, thus well-suited for tackling large-size datasets. Finally, comprehensive experiments confirm the effectiveness and advantages of DVSAI.

Original languageEnglish
Pages (from-to)16568-16577
Number of pages10
JournalProceedings of the AAAI Conference on Artificial Intelligence
Volume38
Issue number15
DOIs
StatePublished - Mar 25 2024
Externally publishedYes
Event38th AAAI Conference on Artificial Intelligence, AAAI 2024 - Vancouver, Canada
Duration: Feb 20 2024Feb 27 2024

Fingerprint

Dive into the research topics of 'DVSAI: Diverse View-Shared Anchors Based Incomplete Multi-View Clustering'. Together they form a unique fingerprint.

Cite this