TY - GEN
T1 - Drive cycle efficiency and emissions estimates for reactivity controlled compression ignition in a multi-cylinder light-duty diesel engine
AU - Curran, Scott J.
AU - Cho, Kukwon
AU - Briggs, Thomas E.
AU - Wagner, Robert M.
PY - 2011
Y1 - 2011
N2 - In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency (BTE) as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent of premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and cylinder pressure rise rate than the use of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to enable RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing, and cylinder pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOX and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. BTE was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.
AB - In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency (BTE) as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent of premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and cylinder pressure rise rate than the use of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to enable RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing, and cylinder pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOX and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. BTE was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.
UR - http://www.scopus.com/inward/record.url?scp=84862527246&partnerID=8YFLogxK
U2 - 10.1115/ICEF2011-60227
DO - 10.1115/ICEF2011-60227
M3 - Conference contribution
AN - SCOPUS:84862527246
SN - 9780791844427
T3 - American Society of Mechanical Engineers, Internal Combustion Engine Division (Publication) ICE
SP - 557
EP - 564
BT - ASME 2011 Internal Combustion Engine Division Fall Technical Conference, ICEF 2011
T2 - ASME 2011 Internal Combustion Engine Division Fall Technical Conference, ICEF 2011
Y2 - 2 October 2011 through 5 October 2011
ER -