Distributed-memory parallel symmetric nonnegative matrix factorization

Srinivas Eswar, Koby Hayashi, Grey Ballard, Ramakrishnan Kannan, Richard Vuduc, Haesun Park

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

8 Scopus citations

Abstract

We develop the first distributed-memory parallel implementation of Symmetric Nonnegative Matrix Factorization (SymNMF), a key data analytics kernel for clustering and dimensionality reduction. Our implementation includes two different algorithms for SymNMF, which give comparable results in terms of time and accuracy. The first algorithm is a parallelization of an existing sequential approach that uses solvers for non symmetric NMF. The second algorithm is a novel approach based on the Gauss-Newton method. It exploits second-order information without incurring large computational and memory costs. We evaluate the scalability of our algorithms on the Summit system at Oak Ridge National Laboratory, scaling up to 128 nodes (4,096 cores) with 70% efficiency. Additionally, we demonstrate our software on an image segmentation task.

Original languageEnglish
Title of host publicationProceedings of SC 2020
Subtitle of host publicationInternational Conference for High Performance Computing, Networking, Storage and Analysis
PublisherIEEE Computer Society
ISBN (Electronic)9781728199986
DOIs
StatePublished - Nov 2020
Event2020 International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2020 - Virtual, Atlanta, United States
Duration: Nov 9 2020Nov 19 2020

Publication series

NameInternational Conference for High Performance Computing, Networking, Storage and Analysis, SC
Volume2020-November
ISSN (Print)2167-4329
ISSN (Electronic)2167-4337

Conference

Conference2020 International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2020
Country/TerritoryUnited States
CityVirtual, Atlanta
Period11/9/2011/19/20

Keywords

  • High performance computing
  • Newton method
  • Parallel algorithms
  • Symmetric Matrices

Fingerprint

Dive into the research topics of 'Distributed-memory parallel symmetric nonnegative matrix factorization'. Together they form a unique fingerprint.

Cite this