TY - GEN
T1 - Distance-aware competitive spatiotemporal searching using spatiotemporal resource matrix factorization (GIS Cup)
AU - Kim, Joon Seok
AU - Pfoser, Dieter
AU - Züfle, Andreas
N1 - Publisher Copyright:
© 2019 Association for Computing Machinery. © 2019 Copyright held by the owner/author(s).
PY - 2019/11/5
Y1 - 2019/11/5
N2 - Congested traffic wastes billions of liters of fuel and is a significant contributor to Green House Gas (GHG) emissions. Although convenient, ride sharing services such as Uber and Lyft are becoming a significant contributor to these emissions not only because of added traffic but by spending time on the road while waiting for passengers. To help improve the impact of ride sharing, we propose an algorithm to optimize the efficiency of drivers searching for customers. In our model, the main goal is to direct drivers represented as idle agents, i.e., not currently assigned a customer or resource, to locations where we predict new resources to appear. Our approach uses non-negative matrix factorization (NMF) to model and predict the spatio-temporal distributions of resources. To choose destinations for idle agents, we employ a greedy heuristic that strikes a balance between distance greed, i.e., to avoid long trips without resources and resource greed, i.e., to move to a location where resources are expected to appear following the NMF model. To ensure that agents do not oversupply areas for which resources are predicted and under supply other areas, we randomize the destinations of agents using the predicted resource distribution within the local neighborhood of an agent. Our experimental evaluation shows that our approach reduces the search time of agents and the wait time of resources using real-world data from Manhattan, New York, USA.
AB - Congested traffic wastes billions of liters of fuel and is a significant contributor to Green House Gas (GHG) emissions. Although convenient, ride sharing services such as Uber and Lyft are becoming a significant contributor to these emissions not only because of added traffic but by spending time on the road while waiting for passengers. To help improve the impact of ride sharing, we propose an algorithm to optimize the efficiency of drivers searching for customers. In our model, the main goal is to direct drivers represented as idle agents, i.e., not currently assigned a customer or resource, to locations where we predict new resources to appear. Our approach uses non-negative matrix factorization (NMF) to model and predict the spatio-temporal distributions of resources. To choose destinations for idle agents, we employ a greedy heuristic that strikes a balance between distance greed, i.e., to avoid long trips without resources and resource greed, i.e., to move to a location where resources are expected to appear following the NMF model. To ensure that agents do not oversupply areas for which resources are predicted and under supply other areas, we randomize the destinations of agents using the predicted resource distribution within the local neighborhood of an agent. Our experimental evaluation shows that our approach reduces the search time of agents and the wait time of resources using real-world data from Manhattan, New York, USA.
KW - Discrete event simulation
KW - Distance-aware search
KW - Non-negative matrix factorization
KW - Simulation
KW - Spatio-temporal search
UR - http://www.scopus.com/inward/record.url?scp=85076966445&partnerID=8YFLogxK
U2 - 10.1145/3347146.3363350
DO - 10.1145/3347146.3363350
M3 - Conference contribution
AN - SCOPUS:85076966445
T3 - GIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems
SP - 624
EP - 627
BT - 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2019
A2 - Banaei-Kashani, Farnoush
A2 - Trajcevski, Goce
A2 - Guting, Ralf Hartmut
A2 - Kulik, Lars
A2 - Newsam, Shawn
PB - Association for Computing Machinery
T2 - 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2019
Y2 - 5 November 2019 through 8 November 2019
ER -