Discrepancy between experimental and theoretical β-decay rates resolved from first principles

P. Gysbers, G. Hagen, J. D. Holt, G. R. Jansen, T. D. Morris, P. Navrátil, T. Papenbrock, S. Quaglioni, A. Schwenk, S. R. Stroberg, K. A. Wendt

Research output: Contribution to journalLetterpeer-review

246 Scopus citations

Abstract

The dominant decay mode of atomic nuclei is beta decay (β-decay), a process that changes a neutron into a proton (and vice versa). This decay offers a window to physics beyond the standard model, and is at the heart of microphysical processes in stellar explosions and element synthesis in the Universe 1–3 . However, observed β-decay rates in nuclei have been found to be systematically smaller than for free neutrons: this 50-year-old puzzle about the apparent quenching of the fundamental coupling constant by a factor of about 0.75 (ref. 4 ) is without a first-principles theoretical explanation. Here, we demonstrate that this quenching arises to a large extent from the coupling of the weak force to two nucleons as well as from strong correlations in the nucleus. We present state-of-the-art computations of β-decays from light- and medium-mass nuclei to 100 Sn by combining effective field theories of the strong and weak forces 5 with powerful quantum many-body techniques 6–8 . Our results are consistent with experimental data and have implications for heavy element synthesis in neutron star mergers 9–11 and predictions for the neutrino-less double-β-decay 3 , where an analogous quenching puzzle is a source of uncertainty in extracting the neutrino mass scale 12 .

Original languageEnglish
Pages (from-to)428-431
Number of pages4
JournalNature Physics
Volume15
Issue number5
DOIs
StatePublished - May 1 2019

Funding

The authors thank H. Grawe and T. Faestermann for useful correspondence, J. Engel, E. Epelbaum, D. Gazit, H. Krebs, D. Lubos, S. Pastore and R. Schiavilla for useful discussions and K. Hebeler for providing us with matrix elements in Jacobi coordinates for the three-nucleon interaction at next-to-next-to-leading order22. This work was prepared in part by Lawrence Livermore National Laboratory (LLNL) under contract DE-AC52-07NA27344 and was supported by the Office of Nuclear Physics, US Department of Energy, under grants DE-FG02-96ER40963, DE-FG02-97ER41014, DESC0008499, DE-SC0018223 and DE-SC0015376, the Field Work Proposals ERKBP57 and ERKBP72 at Oak Ridge National Laboratory (ORNL), the FWP SCW1579, LDRD projects 18-ERD-008 and 18-ERD-058 and the Lawrence Fellowship Program at LLNL, and by NSERC grant no. SAPIN-2016-00033, ERC grant no. 307986 STRONGINT and the DFG under grant SFB 1245. TRIUMF receives federal funding through a contribution agreement with the National Research Council of Canada. Computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) programme. This research used resources of the Oak Ridge Leadership Computing Facility located at ORNL, which is supported by the Office of Science of the Department of Energy under contract no. DE-AC05-00OR22725. Computations were also performed at LLNL Livermore Computing under the institutional Computing Grand Challenge Program, at Calcul Quebec, Westgrid and Compute Canada, and at the Jülich Supercomputing Center (JURECA).

Fingerprint

Dive into the research topics of 'Discrepancy between experimental and theoretical β-decay rates resolved from first principles'. Together they form a unique fingerprint.

Cite this