Abstract
A hallmark of strongly correlated quantum materials is the rich phase diagram resulting from competing and intertwined phases with nearly degenerate ground-state energies1,2. A well-known example is the copper oxides, in which a charge density wave (CDW) is ordered well above and strongly coupled to the magnetic order to form spin-charge-separated stripes that compete with superconductivity1,2. Recently, such rich phase diagrams have also been shown in correlated topological materials. In 2D kagome lattice metals consisting of corner-sharing triangles, the geometry of the lattice can produce flat bands with localized electrons3,4, non-trivial topology5–7, chiral magnetic order8,9, superconductivity and CDW order10–15. Although CDW has been found in weakly electron-correlated non-magnetic AV3Sb5 (A = K, Rb, Cs)10–15, it has not yet been observed in correlated magnetic-ordered kagome lattice metals4,16–21. Here we report the discovery of CDW in the antiferromagnetic (AFM) ordered phase of kagome lattice FeGe (refs. 16–19). The CDW in FeGe occurs at wavevectors identical to that of AV3Sb5 (refs. 10–15), enhances the AFM ordered moment and induces an emergent anomalous Hall effect22,23. Our findings suggest that CDW in FeGe arises from the combination of electron-correlations-driven AFM order and van Hove singularities (vHSs)-driven instability possibly associated with a chiral flux phase24–28, in stark contrast to strongly correlated copper oxides1,2 and nickelates29–31, in which the CDW precedes or accompanies the magnetic order.
Original language | English |
---|---|
Pages (from-to) | 490-495 |
Number of pages | 6 |
Journal | Nature |
Volume | 609 |
Issue number | 7927 |
DOIs | |
State | Published - Sep 15 2022 |
Funding
We thank D. Xiao, Q. Si and C. Setty for helpful discussions. The neutron scattering and single-crystal synthesis work at Rice was supported by US NSF-DMR-2100741 and by the Robert A. Welch Foundation under grant no. C-1839, respectively. The ARPES work at Rice was supported by the U.S. Department Of Energy (DOE) grant no. DE-SC0021421, the Gordon and Betty Moore Foundation’s EPiQS Initiative through grant no. GBMF9470 and the Robert A. Welch Foundation grant no. C-2024. The transport experiment at the University of Washington was supported by the Air Force Office of Scientific Research under grant FA9550-21-1-0068 and the David and Lucile Packard Foundation. Experimental and theoretical work at Princeton University was supported by the Gordon and Betty Moore Foundation (GBMF4547 and GBMF9461; M.Z.H.) and the U.S. DOE under the Basic Energy Sciences programme (grant no. DOE/BES DE-FG-02-05ER46200). The work at the University of California, Berkeley was supported by the U.S. DOE under contract no. DE-AC02-05-CH11231 in the Quantum Materials Program (KC2202). This research used resources of the Advanced Light Source and the Stanford Synchrotron Radiation Lightsource, both U.S. DOE Office of Science User Facilities under contract nos. DE-AC02-05CH11231 and AC02-76SF00515, respectively. A portion of this research used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by Oak Ridge National Laboratory. We thank D. Xiao, Q. Si and C. Setty for helpful discussions. The neutron scattering and single-crystal synthesis work at Rice was supported by US NSF-DMR-2100741 and by the Robert A. Welch Foundation under grant no. C-1839, respectively. The ARPES work at Rice was supported by the U.S. Department Of Energy (DOE) grant no. DE-SC0021421, the Gordon and Betty Moore Foundation’s EPiQS Initiative through grant no. GBMF9470 and the Robert A. Welch Foundation grant no. C-2024. The transport experiment at the University of Washington was supported by the Air Force Office of Scientific Research under grant FA9550-21-1-0068 and the David and Lucile Packard Foundation. Experimental and theoretical work at Princeton University was supported by the Gordon and Betty Moore Foundation (GBMF4547 and GBMF9461; M.Z.H.) and the U.S. DOE under the Basic Energy Sciences programme (grant no. DOE/BES DE-FG-02-05ER46200). The work at the University of California, Berkeley was supported by the U.S. DOE under contract no. DE-AC02-05-CH11231 in the Quantum Materials Program (KC2202). This research used resources of the Advanced Light Source and the Stanford Synchrotron Radiation Lightsource, both U.S. DOE Office of Science User Facilities under contract nos. DE-AC02-05CH11231 and AC02-76SF00515, respectively. A portion of this research used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by Oak Ridge National Laboratory.