Abstract
Arrays of microwells connected by nanoscale channels with sizes on the order of 10 nm can be created in an ethylene glycol dimethacrylate (EGMDA) polymer using the DNA combing and imprinting technique. Larger micro-scale channels which lead into the microwell/nanochannel arrays are needed to allow the arrays to be externally filled with desired reagents, molecules and cells. In this work, direct-write femtosecond laser ablation was employed as a post process to fabricate these microscale filling channels. Single pulse and multiple pulses overlap ablation was first conducted on an EGMDA polymer using a focused femtosecond laser beam. Scanning electron microscopy was employed to measure the ablated channel width. Single pulse ablation threshold fluence and incubation coefficient were found and were used to predict microchannel width. Finally, femtosecond laser ablation was used to fabricate filling channels on microwell/nanochannel arrays. Fluorescent flow testing was performed to verify fluid connectivity between the laser-ablated filling channels and the microwell/nanochannel array.
Original language | English |
---|---|
Article number | 015012 |
Journal | Journal of Micromechanics and Microengineering |
Volume | 21 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2011 |
Externally published | Yes |