Direct Measurement and Chemical Speciation of Top Ring Zone Liquid during Engine Operation

Derek Splitter, Barry Burrows, Sam Lewis

Research output: Contribution to journalConference articlepeer-review

9 Scopus citations

Abstract

The present manuscript consists of proof of concept experiments involving direct measurements and detailed chemical speciation from the top ring zone of a running engine. The work uses a naturally aspirated single cylinder utility engine that has been modified to allow direct liquid sample acquisition from behind the top ring. Samples were analyzed and speciated using gas chromatographic techniques. Results show that the liquid mixture in the top ring zone is neither neat lubricant nor fuel but a combination of the two with unique chemical properties. At the tested steady state no-load operating condition, the chemical species of the top ring zone liquid were found to be highly dependent on boiling point, where both low reactivity higher boiling point fuel species and lubricant are observed to be the dominant constituents. The results show that at least for the tested condition, approximately 25% of the top ring zone is comprised of gasoline fuel like molecules, which are dominated by high octane number aromatic species, while the remainder of the liquid is comprised of lubricant like species.

Original languageEnglish
JournalSAE Technical Papers
Volume2015-April
Issue numberApril
DOIs
StatePublished - Apr 14 2015
EventSAE 2015 World Congress and Exhibition - Detroit, United States
Duration: Apr 21 2015Apr 23 2015

Fingerprint

Dive into the research topics of 'Direct Measurement and Chemical Speciation of Top Ring Zone Liquid during Engine Operation'. Together they form a unique fingerprint.

Cite this