Abstract
Atmospheric CO2 removal using engineered chemical processes, aka direct air capture (DAC), has become an essential component of our available portfolio for mitigating climate change. Here we describe a promising approach to DAC based on reactive crystallization of atmospheric CO2 (RC-DAC) with aqueous guanidine and amino acid. Compared to the previously studied phase-changing DAC processes involving initial CO2 absorption by an aqueous alkaline solvent followed by carbonate crystallization in a second step, RC-DAC combines the CO2 absorption and carbonate crystallization into a single step. Thus, as the insoluble carbonate salts are removed from solution by crystallization, more CO2 is pulled from the air into solution, further driving the DAC process. The RC-DAC was performed in a household humidifier as the air-liquid contactor, which can handle solid-liquid slurries effectively. The crystallization was monitored in situ by pH measurements, real-time imaging with a microscope probe, and by Raman spectroscopy, and ex situ by NMR spectroscopy, powder X-ray diffraction, and total inorganic carbonate analysis. The investigation provided a detailed mechanistic picture of the RC-DAC process, involving formation of carbamate and carbonate anions in solution, followed by sequential crystallization of different guanidinium carbonate phases.
Original language | English |
---|---|
Pages (from-to) | 4556-4562 |
Number of pages | 7 |
Journal | Crystal Growth and Design |
Volume | 24 |
Issue number | 11 |
DOIs | |
State | Published - Jun 5 2024 |
Funding
This research was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division.
Funders | Funder number |
---|---|
U.S. Department of Energy | |
Office of Science | |
Basic Energy Sciences | |
Chemical Sciences, Geosciences, and Biosciences Division |