Abstract
The ratio of syringyl (S) and guaiacyl (G) units in lignin has been regarded as a major factor in determining the maximum monomer yield from lignin depolymerization. This limit arises from the notion that G units are prone to C-C bond formation during lignin biosynthesis, resulting in less ether linkages that generate monomers. This study uses reductive catalytic fractionation (RCF) in flow-through reactors as an analytical tool to depolymerize lignin in poplar with naturally varying S/G ratios, and directly challenges the common conception that the S/G ratio predicts monomer yields. Rather, this work suggests that the plant controls C-O and C-C bond content by regulating monomer transport during lignin biosynthesis. Overall, our results indicate that additional factors beyond the monomeric composition of native lignin are important in developing a fundamental understanding of lignin biosynthesis.
Original language | English |
---|---|
Article number | 2033 |
Journal | Nature Communications |
Volume | 10 |
Issue number | 1 |
DOIs | |
State | Published - Dec 1 2019 |
Funding
Funding for E.M.A., M.L.S., W.M., G.T.B., and Y.R.-L. was provided by The Center for Bioenergy Innovation a U.S. Department of Energy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. Additionally, R.K., M.R., K.R., and G.T.B. thank the US Department of Energy Bioenergy Technologies Office for funding under Contract DE-AC36-08GO28308 with the National Renewable Energy Laboratory.
Funders | Funder number |
---|---|
Center for Bioenergy Innovation a U.S. Department of Energy Research Center | |
DOE Office of Science | |
Office of Biological and Environmental Research | |
US Department of Energy BioEnergy Technologies Office | DE-AC36-08GO28308 |
National Renewable Energy Laboratory |