Device-independent quantum random-number generation

Yang Liu, Qi Zhao, Ming Han Li, Jian Yu Guan, Yanbao Zhang, Bing Bai, Weijun Zhang, Wen Zhao Liu, Cheng Wu, Xiao Yuan, Hao Li, W. J. Munro, Zhen Wang, Lixing You, Jun Zhang, Xiongfeng Ma, Jingyun Fan, Qiang Zhang, Jian Wei Pan

Research output: Contribution to journalArticlepeer-review

171 Scopus citations

Abstract

Randomness is important for many information processing applications, including numerical modelling and cryptography1,2. Device-independent quantum random-number generation (DIQRNG)3,4 based on the loophole-free violation of a Bell inequality produces genuine, unpredictable randomness without requiring any assumptions about the inner workings of the devices, and is therefore an ultimate goal in the field of quantum information science5–7. Previously reported experimental demonstrations of DIQRNG8,9 were not provably secure against the most general adversaries or did not close the ‘locality’ loophole of the Bell test. Here we present DIQRNG that is secure against quantum and classical adversaries10–12. We use state-of-the-art quantum optical technology to create, modulate and detect entangled photon pairs, achieving an efficiency of more than 78 per cent from creation to detection at a distance of about 200 metres that greatly exceeds the threshold for closing the ‘detection’ loophole of the Bell test. By independently and randomly choosing the base settings for measuring the entangled photon pairs and by ensuring space-like separation between the measurement events, we also satisfy the no-signalling condition and close the ‘locality’ loophole of the Bell test, thus enabling the realization of the loophole-free violation of a Bell inequality. This, along with a high-voltage, high-repetition-rate Pockels cell modulation set-up, allows us to accumulate sufficient data in the experimental time to extract genuine quantum randomness that is secure against the most general adversaries. By applying a large (137.90 gigabits × 62.469 megabits) Toeplitz-matrix hashing technique, we obtain 6.2469 × 107 quantum-certified random bits in 96 hours with a total failure probability (of producing a random number that is not guaranteed to be perfectly secure) of less than 10−5. Our demonstration is a crucial step towards transforming DIQRNG from a concept to a key aspect of practical applications that require high levels of security and thus genuine randomness7. Our work may also help to improve our understanding of the origin of randomness from a fundamental perspective.

Original languageEnglish
Pages (from-to)548-551
Number of pages4
JournalNature
Volume562
Issue number7728
DOIs
StatePublished - Oct 25 2018
Externally publishedYes

Funding

Acknowledgements We thank S.-R. Zhao, Y.-H. Li, L.-K. Chen and R. Jin for experimental assistance, J. Zhong and S.-C. Shi for low-temperature system maintenance, and T. Peng, Y. Cao, C.-Z. Peng and Y.-A. Chen for discussions. This work was supported by the National Key R&D Program of China (2017YFA0303900, 2017YFA0304000), the National Natural Science Foundation of China, the Chinese Academy of Sciences and the Anhui Initiative in Quantum Information Technologies.

FundersFunder number
Anhui Initiative in Quantum Information Technologies
National Key R&D Program of China2017YFA0304000, 2017YFA0303900
National Natural Science Foundation of China
Chinese Academy of Sciences

    Fingerprint

    Dive into the research topics of 'Device-independent quantum random-number generation'. Together they form a unique fingerprint.

    Cite this