TY - JOUR
T1 - Development status of a sic-foam based flow channel insert for a U.S.-ITER DCLL tbm
AU - Sharafat, Shahram
AU - Aoyama, Aaron
AU - Morley, Neil
AU - Smolentsev, Sergey
AU - Katoh, Y.
AU - Williams, Brian
AU - Ghoniem, Nasr
PY - 2009/8
Y1 - 2009/8
N2 - The U.S.-ITER DCLL (Dual Coolant Liquid Lead) TBM (Test Blanket Module) uses a Flow Channel Insert (FCI), to test the feasibility of high temperature DCLL concepts for future power reactors. The FCI serves a dual function of electrical insulation, to mitigate MHD effects, and thermal insulation to keep steel-PbLi interface temperatures below allowable limits. As a nonstructural component, the key performance requirements of the FCI structure are compatibility with PbLi, longterm radiation damage resistance, maintaining insulating properties over the lifetime, adequate insulation even in case of localized failures, and manufacturability. The main loads on the FCI are thermally induced due to through the thickness temperature gradients and due to non-uniform PbLi temperatures along the flow channel ∼1.6 m). A number of SiC-based materials are being developed for FCI applications, including SiC/SiC composites and porous SiC bonded between CVD SiC face sheets. Here, we report on an FCI design based on open-cell SiC-foam material. Thermo-mechanical analysis of this FCI concept indicate that a SiC-foam FCI structure is capable of withstanding anticipated primary and secondary stresses during operation in an ITER TBM environment. A complete 30 cm long prototypical segment of the FCI structure was designed and is being fabricated, demonstrating the SiC-foam based FCI structure to be very low-cost and viability candidate for an ITER TBM FCI structure.
AB - The U.S.-ITER DCLL (Dual Coolant Liquid Lead) TBM (Test Blanket Module) uses a Flow Channel Insert (FCI), to test the feasibility of high temperature DCLL concepts for future power reactors. The FCI serves a dual function of electrical insulation, to mitigate MHD effects, and thermal insulation to keep steel-PbLi interface temperatures below allowable limits. As a nonstructural component, the key performance requirements of the FCI structure are compatibility with PbLi, longterm radiation damage resistance, maintaining insulating properties over the lifetime, adequate insulation even in case of localized failures, and manufacturability. The main loads on the FCI are thermally induced due to through the thickness temperature gradients and due to non-uniform PbLi temperatures along the flow channel ∼1.6 m). A number of SiC-based materials are being developed for FCI applications, including SiC/SiC composites and porous SiC bonded between CVD SiC face sheets. Here, we report on an FCI design based on open-cell SiC-foam material. Thermo-mechanical analysis of this FCI concept indicate that a SiC-foam FCI structure is capable of withstanding anticipated primary and secondary stresses during operation in an ITER TBM environment. A complete 30 cm long prototypical segment of the FCI structure was designed and is being fabricated, demonstrating the SiC-foam based FCI structure to be very low-cost and viability candidate for an ITER TBM FCI structure.
UR - http://www.scopus.com/inward/record.url?scp=69549110589&partnerID=8YFLogxK
U2 - 10.13182/FST09-7
DO - 10.13182/FST09-7
M3 - Article
AN - SCOPUS:69549110589
SN - 1536-1055
VL - 56
SP - 883
EP - 891
JO - Fusion Science and Technology
JF - Fusion Science and Technology
IS - 2
ER -