Development of MPACT for full-core simulations of MAGNOX gas-cooled nuclear reactors

Brian J. Ade, Nicholas P. Luciano, Andrew J. Conant, Cole A. Gentry, Shane G. Stimpson, Benjamin S. Collins, Kang Seog Kim, Robert Mills

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

The MPACT code, jointly developed by Oak Ridge National Laboratory and University of Michigan, is designed to perform high-fidelity light water reactor (LWR) analysis using whole-core pin-resolved neutron transport calculations on modern parallel-computing hardware. MPACT uses the subgroup method for resonance self-shielding, while the primary neutron transport solver uses a 2D/1D method that is based on the method of characteristics (MoC) for the x-y planes coupled with a 1D diffusion or transport solver in the axial dimension. Additional geometry capabilities are currently being developed in MPACT to support hexagonal-pitched lattices, as well as interstitial geometry (i.e., control rods at the corner of four adjacent pin cells). In this research, the MPACT method is tested on gas-cooled reactors by applying MPACT to full-core MAGNOX reactor test problems. MAGNOX test problems were chosen due to the availability of high-quality reactor design and validation data (available through an ongoing collaboration with the National Nuclear Laboratory in the United Kingdom) and the existence of a relatively complex axial power shape that is expected to challenge the MPACT method. MPACT's convergence for partial- and full-core problems will be tested and verified. MPACT will be compared with high-fidelity continuous-energy Monte Carlo simulations to verify core reactivity, power distributions, and performance of the available cross section data libraries and energy group structures.

Original languageEnglish
Title of host publicationInternational Conference on Physics of Reactors
Subtitle of host publicationTransition to a Scalable Nuclear Future, PHYSOR 2020
EditorsMarat Margulis, Partrick Blaise
PublisherEDP Sciences - Web of Conferences
Pages1266-1274
Number of pages9
ISBN (Electronic)9781713827245
DOIs
StatePublished - 2020
Event2020 International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future, PHYSOR 2020 - Cambridge, United Kingdom
Duration: Mar 28 2020Apr 2 2020

Publication series

NameInternational Conference on Physics of Reactors: Transition to a Scalable Nuclear Future, PHYSOR 2020
Volume2020-March

Conference

Conference2020 International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future, PHYSOR 2020
Country/TerritoryUnited Kingdom
CityCambridge
Period03/28/2004/2/20

Funding

This work was funded by the Office of Defense Nuclear Nonproliferation Research and Development (NA-22), within the US Department of Energy’s National Nuclear Security Administration. Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

FundersFunder number
DOE Public Access Plan
Office of Defense Nuclear Nonproliferation Research and DevelopmentNA-22
U.S. Department of Energy
National Nuclear Security Administration

    Keywords

    • Full-core neutron transport
    • Gas-cooled reactor
    • MAGNOX

    Fingerprint

    Dive into the research topics of 'Development of MPACT for full-core simulations of MAGNOX gas-cooled nuclear reactors'. Together they form a unique fingerprint.

    Cite this