Abstract
Soon after the discovery of deuterium, efforts to utilize this stable isotope of hydrogen for labeling of plants began and have proven successful for natural abundance to 20% enrichment. However, isotopic labeling with deuterium (2H) in higher plants at the level of 40% and higher is complicated by both physiological responses, particularly water exchange through transpiration, and inhibitory effects of D2O on germination, rooting, and growth. The highest incorporation of 40-50% had been reported for photoheterotrophic cultivation of the duckweed Lemna. Higher substitution is desirable for certain applications using neutron scattering and nuclear magnetic resonance (NMR) techniques. 1H2H NMR and mass spectroscopy are standard methods frequently used for determination of location and amount of deuterium substitution. The changes in infrared (IR) absorption observed for H to D substitution in hydroxyl and alkyl groups provide rapid initial evaluation of incorporation. Short-term experiments with cold-tolerant annual grasses can be carried out in enclosed growth containers to evaluate incorporation. Growth in individual chambers under continuous air perfusion with dried sterile-filtered air enables long-term cultivation of multiple plants at different D2O concentrations. Vegetative propagation from cuttings extends capabilities to species with low germination rates. Cultivation in 50% D2O of annual ryegrass and switchgrass following establishment of roots by growth in H2O produces samples with normal morphology and 30-40% deuterium incorporation in the biomass. Winter grain rye (Secale cereale) was found to efficiently incorporate deuterium by photosynthetic fixation from 50% D2O but did not incorporate deuterated phenylalanine-d8 from the growth medium.
Original language | English |
---|---|
Title of host publication | Methods in Enzymology |
Publisher | Academic Press Inc. |
Pages | 213-243 |
Number of pages | 31 |
DOIs | |
State | Published - 2015 |
Publication series
Name | Methods in Enzymology |
---|---|
Volume | 565 |
ISSN (Print) | 0076-6879 |
ISSN (Electronic) | 1557-7988 |
Funding
This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan ( http://energy.gov/downloads/doe-public-access-plan ). This research was supported by the Genomic Science Program, Office of Biological and Environmental Research, U.S. Department of Energy, under Contract FWP ERKP752. The research at Oak Ridge National Laboratory's Center for Structural Molecular Biology (CSMB) was supported by the Office of Biological and Environmental Research under Contract FWP ERKP291, using facilities supported by the Office of Basic Energy Sciences, U.S. Department of Energy. R.S. was partly supported by the graduate fellowship program of the Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-00OR22725.