Abstract
Metallic nuclear fuels are subject to research and development for use in advanced reactors. Robust, accurate metallic fuel performance models are important for the design, safety analysis, and licensing of these reactors. However, metallic fuel performance models require additional development; they are not as mature as UO2 fuel performance models. A benchmark case based on the IFR-1 experiment was developed to better gauge the accuracy of existing models, identify models for high-priority development, and potentially quantify any future improvements made by further model development. This work collected publicly available information on the IFR-1 experiment and used it to develop the benchmark case. Fuel behavior during the IFR-1 irradiation was simulated by using the fuel performance code BISON, and the predicted results were compared with postirradiation examination data from the IFR-1 experiment. A sensitivity study and tuning studies were performed as a preliminary investigation into the causes of inaccurate temperature and dimensional change predictions. The benchmark predicted reasonably accurate values for the burnup and fission gas release. There was error in the predicted temperatures, which could be explained by uncertainty in the input parameters and legacy temperatures. BISON over-predicted dimensional changes in the fuel and cladding. The sensitivity study showed that the dimensional changes were most sensitive to the fuel swelling anisotropy and the cladding void swelling model. Future benchmark and model development should focus on cladding swelling behaviors to improve dimensional change predictions.
Original language | English |
---|---|
Article number | 152997 |
Journal | Journal of Nuclear Materials |
Volume | 553 |
DOIs | |
State | Published - Sep 2021 |
Funding
This work was funded by the DOE Office of Nuclear Energy (NE) Versatile Test Reactor (VTR) Project. The reported work resulted from studies that support a VTR conceptual design, cost, and schedule estimates for DOE-NE to make a decision of procurement. As such, it is preliminary. The authors thank Stephen Novascone, Al Casagranda, and Adam Zabriskie of the INL BISON development team and Alexander Lindsay of the INL MOOSE development team for their valuable input in BISON fuel performance models in metallic fuels. The authors also thank Doug Porter for sharing his knowledge and experience with metallic fuels in general and the IFR-1 experiment in particular. This work was funded by the DOE Office of Nuclear Energy (NE) Versatile Test Reactor (VTR) Project. The reported work resulted from studies that support a VTR conceptual design, cost, and schedule estimates for DOE-NE to make a decision of procurement. As such, it is preliminary.
Keywords
- BISON
- Fuel performance
- Sensitivity analysis
- U-Pu-Zr