Abstract
The U.S. Department of Energy's Co-Optimization of Fuels and Engines initiative (Co-Optima) aims to simultaneously transform both transportation fuels and engines to maximize performance and energy efficiency. Researchers from across the DOE national laboratories are working within Co-Optima to develop merit functions for evaluating the impact of fuel formulations on the performance of advanced engines. The merit functions relate overall engine efficiency to specific measurable fuel properties and will serve as key tools in the fuel/engine co-optimization process. This work focused on developing a term for the Co-Optima light-duty boosted spark ignition (SI) engine merit function that captures the effects of fuel composition on emissions control system performance. For stoichiometric light-duty SI engines, the majority of NOx, NMOG, and CO emissions occur during cold start, before the three-way catalyst (TWC) has reached its "light-off" temperature. This light-off temperature depends on the exhaust composition, which changes with fuel formulation. Thus, the time to achieve light-off, and therefore the cold start emissions, depends on fuel composition. Since the time to reach light-off must be minimized to meet emissions regulations, modern vehicles employ cold start strategies that intentionally release fuel energy into the engine exhaust to heat the TWC above the light-off temperature as quickly as possible. The fuel penalty associated with catalyst heating during cold start provides a link between fuel properties, emissions performance, and engine efficiency. This paper describes the derivation of the Co-Optima SI engine merit function term for emissions control, which is based on the cold start fuel penalty for catalyst heating and the catalytic light-off temperature for a particular fuel composition. It also discusses the process used for extracting cold start fuel penalties from chassis dynamometer data sets previously collected at ORNL. The form of the merit function term is simple, but it is only intended as a starting point for comparing the potential impacts of changes in fuel formulation on emissions control system performance.
Original language | English |
---|---|
Journal | SAE Technical Papers |
Volume | 2018-April |
DOIs | |
State | Published - 2018 |
Event | 2018 SAE World Congress Experience, WCX 2018 - Detroit, United States Duration: Apr 10 2018 → Apr 12 2018 |
Funding
Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). This report and the work described were sponsored by the U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO) and Vehicle Technologies Office (VTO) under the DOE Co-Optimization of Fuels and Engines Initiative. The authors gratefully acknowledge the support and direction of Alicia Lindauer at BETO, Kevin Stork at VTO, and the Co-Optima Leadership Team.
Funders | Funder number |
---|---|
U.S. Department of Energy | |
Bioenergy Technologies Office |