TY - JOUR
T1 - Developing safety performance functions for freeways at different aggregation levels using multi-state microscopic traffic detector data
AU - Yuan, Jinghui
AU - Abdel-Aty, Mohamed
AU - Fu, Jingwan
AU - Wu, Yina
AU - Yue, Lishengsa
AU - Eluru, Naveen
N1 - Publisher Copyright:
© 2021 Elsevier Ltd
PY - 2021/3
Y1 - 2021/3
N2 - Safety Performance Functions (SPFs) have been widely used by researchers and practitioners to conduct roadway safety evaluation. Traditional SPFs are usually developed by using annual average daily traffic (AADT) along with geometric characteristics. However, the high level of aggregation may lead to a failure to capture the temporal variation in traffic characteristics (e.g., traffic volume and speed) and crash frequencies. In this study, SPFs at different aggregation levels were developed based on microscopic traffic detector data from California, Florida, and Virginia. More specifically, five aggregation levels were considered: (1) annual average weekday hourly traffic (AAWDHT), (2) annual average weekend hourly traffic (AAWEHT), (3) annual average weekday peak/off-peak traffic (AAWDPT), (4) annual average day of the week traffic (AADOWT), and (5) annual average daily traffic (AADT). Model estimation results showed that the segment length and volume, as exposure variables, are significant across all the aggregation levels. Average speed is significant with a negative coefficient, and the standard deviation of speed was found to be positively associated with the crash frequency. It is noteworthy that the operation of the high occupancy vehicle (HOV) lanes was found to have a positive effect on crash frequency across all the aggregation levels. The model results also showed that the AAWDPT and AADOWT models consistently performed better (the improvements range from 3.14%–16.20%) than the AADT-based SPF, which implies that the differences between the day of the week and peak/off-peak periods should be considered in the development of crash prediction models. The model transferability results indicated that the SPFs between Florida and Virginia are transferrable, while the models between California and the other two states are not transferrable.
AB - Safety Performance Functions (SPFs) have been widely used by researchers and practitioners to conduct roadway safety evaluation. Traditional SPFs are usually developed by using annual average daily traffic (AADT) along with geometric characteristics. However, the high level of aggregation may lead to a failure to capture the temporal variation in traffic characteristics (e.g., traffic volume and speed) and crash frequencies. In this study, SPFs at different aggregation levels were developed based on microscopic traffic detector data from California, Florida, and Virginia. More specifically, five aggregation levels were considered: (1) annual average weekday hourly traffic (AAWDHT), (2) annual average weekend hourly traffic (AAWEHT), (3) annual average weekday peak/off-peak traffic (AAWDPT), (4) annual average day of the week traffic (AADOWT), and (5) annual average daily traffic (AADT). Model estimation results showed that the segment length and volume, as exposure variables, are significant across all the aggregation levels. Average speed is significant with a negative coefficient, and the standard deviation of speed was found to be positively associated with the crash frequency. It is noteworthy that the operation of the high occupancy vehicle (HOV) lanes was found to have a positive effect on crash frequency across all the aggregation levels. The model results also showed that the AAWDPT and AADOWT models consistently performed better (the improvements range from 3.14%–16.20%) than the AADT-based SPF, which implies that the differences between the day of the week and peak/off-peak periods should be considered in the development of crash prediction models. The model transferability results indicated that the SPFs between Florida and Virginia are transferrable, while the models between California and the other two states are not transferrable.
KW - Aggregation level
KW - Freeway
KW - High occupancy vehicle lane
KW - Microscopic traffic detector data
KW - Safety performance function
UR - http://www.scopus.com/inward/record.url?scp=85100207098&partnerID=8YFLogxK
U2 - 10.1016/j.aap.2021.105984
DO - 10.1016/j.aap.2021.105984
M3 - Article
C2 - 33484973
AN - SCOPUS:85100207098
SN - 0001-4575
VL - 151
JO - Accident Analysis and Prevention
JF - Accident Analysis and Prevention
M1 - 105984
ER -