Deterministic switching of a perpendicularly polarized magnet using unconventional spin–orbit torques in WTe2

I. Hsuan Kao, Ryan Muzzio, Hantao Zhang, Menglin Zhu, Jacob Gobbo, Sean Yuan, Daniel Weber, Rahul Rao, Jiahan Li, James H. Edgar, Joshua E. Goldberger, Jiaqiang Yan, David G. Mandrus, Jinwoo Hwang, Ran Cheng, Jyoti Katoch, Simranjeet Singh

Research output: Contribution to journalArticlepeer-review

104 Scopus citations

Abstract

Spin–orbit torque (SOT)-driven deterministic control of the magnetic state of a ferromagnet with perpendicular magnetic anisotropy is key to next-generation spintronic applications including non-volatile, ultrafast and energy-efficient data-storage devices. However, field-free deterministic switching of perpendicular magnetization remains a challenge because it requires an out-of-plane antidamping torque, which is not allowed in conventional spin-source materials such as heavy metals and topological insulators due to the system’s symmetry. The exploitation of low-crystal symmetries in emergent quantum materials offers a unique approach to achieve SOTs with unconventional forms. Here we report an experimental realization of field-free deterministic magnetic switching of a perpendicularly polarized van der Waals magnet employing an out-of-plane antidamping SOT generated in layered WTe2, a quantum material with a low-symmetry crystal structure. Our numerical simulations suggest that the out-of-plane antidamping torque in WTe2 is essential to explain the observed magnetization switching.

Original languageEnglish
JournalNature Materials
DOIs
StateAccepted/In press - 2022

Fingerprint

Dive into the research topics of 'Deterministic switching of a perpendicularly polarized magnet using unconventional spin–orbit torques in WTe2'. Together they form a unique fingerprint.

Cite this