Deterministic Discrete Fracture Network (DFN) Model for the EGS Collab Project on the 4850 Level of the Sanford Underground Research Facility (SURF)

EGS Collab Team

Research output: Contribution to conferencePaperpeer-review

5 Scopus citations

Abstract

The EGS Collab is conducting hydraulic fracture stimulation and fluid circulation experiments in the Sanford Underground Research Facility (SURF) located in Lead, South Dakota. A total of eight ~60m-long subhorizontal boreholes were drilled from the 4850 Level (~1.5 km below the ground surface) into the crystalline rock of this former mine. Six of these holes are used for geophysical monitoring, one is used for hydraulic fracture stimulation, and the remaining hole was designed as a production borehole that receives water from the injection well via the induced and natural fracture system. The primary goal of creating the discrete fracture network model is to show that these modeling methods are critical for the development of enhanced geothermal systems (EGS). This includes the prediction of rock behavior during fracturing and during an extended period of water flow between the parallel injection and production boreholes. Understanding the results from the induced fracturing and flow is complicated by the presence of significant natural fractures that interact with the stimulation and/or flow pathways. The delineation and characterization of natural fractures is thus an important part of the project, and therefore a model of the Discrete Fracture Network (DFN) was developed on a deterministic basis. The DFN was populated using observations and interpretations integrated from drift (horizontal passageways that allow access in the underground) fracture mapping, analysis of core recovered from the eight boreholes, borehole televiewer logs and videos, and observations of flow between and within boreholes and in the drift. The natural fracture system is dominated by a pervasive northwest-trending, steeply dipping shear system that is identifiable in the drifts and the core. Hydraulic fracture stimulation, flow/tracer circulation tests, and geophysical monitoring revealed that the behavior of the injected water, and perhaps the growth of induced fractures, has been significantly influenced by the existing fractures identified in the DFN.

Original languageEnglish
StatePublished - 2020
Event54th U.S. Rock Mechanics/Geomechanics Symposium - Virtual, Online
Duration: Jun 28 2020Jul 1 2020

Conference

Conference54th U.S. Rock Mechanics/Geomechanics Symposium
CityVirtual, Online
Period06/28/2007/1/20

Funding

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. This material was based upon work supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), Office of Technology Development, Geothermal Technologies Office, under Award Number DE-AC02-05CH11231 with LBNL and other awards to other national laboratories. The United States Government retains, and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

FundersFunder number
U.S. Department of Energy
Office of Energy Efficiency and Renewable Energy
Office of Technology Development
National Nuclear Security AdministrationDE-NA0003525
National Nuclear Security Administration
Lawrence Berkeley National Laboratory
Geothermal Technologies OfficeDE-AC02-05CH11231
Geothermal Technologies Office

    Fingerprint

    Dive into the research topics of 'Deterministic Discrete Fracture Network (DFN) Model for the EGS Collab Project on the 4850 Level of the Sanford Underground Research Facility (SURF)'. Together they form a unique fingerprint.

    Cite this