Detection of Kardar–Parisi–Zhang hydrodynamics in a quantum Heisenberg spin-1/2 chain

A. Scheie, N. E. Sherman, M. Dupont, S. E. Nagler, M. B. Stone, G. E. Granroth, J. E. Moore, D. A. Tennant

Research output: Contribution to journalArticlepeer-review

88 Scopus citations

Abstract

Classical hydrodynamics is a remarkably versatile description of the coarse-grained behaviour of many-particle systems once local equilibrium has been established1. The form of the hydrodynamical equations is determined primarily by the conserved quantities present in a system. Some quantum spin chains are known to possess, even in the simplest cases, a greatly expanded set of conservation laws, and recent work suggests that these laws strongly modify collective spin dynamics, even at high temperature2,3. Here, by probing the dynamical exponent of the one-dimensional Heisenberg antiferromagnet KCuF3 with neutron scattering, we find evidence that the spin dynamics are well described by the dynamical exponent z = 3/2, which is consistent with the recent theoretical conjecture that the dynamics of this quantum system are described by the Kardar–Parisi–Zhang universality class4,5. This observation shows that low-energy inelastic neutron scattering at moderate temperatures can reveal the details of emergent quantum fluid properties like those arising in non-Fermi liquids in higher dimensions.

Original languageEnglish
Pages (from-to)726-730
Number of pages5
JournalNature Physics
Volume17
Issue number6
DOIs
StatePublished - Jun 2021

Fingerprint

Dive into the research topics of 'Detection of Kardar–Parisi–Zhang hydrodynamics in a quantum Heisenberg spin-1/2 chain'. Together they form a unique fingerprint.

Cite this