Detailed three-dimensional velocity field measurements of a complex internal cooling flow within a gas turbine vane

Michael J. Benson, David Helmer, Bret P. van Poppel, Benjamin Duhaime, David Bindon, Mattias Cooper, Robert Woodings, Christopher J. Elkins

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

A 6.67 scale model of the Advanced Recirculation Total Impingement Cooling (ARTIC) gas turbine vane insert’s leading edge was designed, built using stereolithography (SLA) fabrication methods, and tested using Magnetic Resonance Velocimetry (MRV), a non-invasive data acquisition technique that captures three-dimensional, three-component velocity fields of a copper sulfate solution over the course of several hours. The experimental apparatus supplied constant flow rates through a test section placed within a 3.0 Tesla MRI magnet. Tests were run at two fully turbulent flow rates corresponding to Reynolds numbers based on hydraulic diameter of 10,000 and 20,000 with the higher flow rate case achieving dynamic similarity with the full-scale ARTIC device. The experimental results elucidated key details and intricacies of the complex flow within the insert. Analysis of flow distribution between each of the three independent impingement zones revealed a degree of measurable jet to jet variability. Stagnation and recirculation zones were detected, informing design modifications and enabling assessment of inlet effects on impingement. Measurement uncertainty was assessed and estimated to be approximately 7.5% of the peak velocity at the inlet to the central feed cavity.

Original languageEnglish
Title of host publicationFluids Engineering
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791859445
DOIs
StatePublished - 2019
Externally publishedYes
EventASME 2019 International Mechanical Engineering Congress and Exposition, IMECE 2019 - Salt Lake City, United States
Duration: Nov 11 2019Nov 14 2019

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume7

Conference

ConferenceASME 2019 International Mechanical Engineering Congress and Exposition, IMECE 2019
Country/TerritoryUnited States
CitySalt Lake City
Period11/11/1911/14/19

Fingerprint

Dive into the research topics of 'Detailed three-dimensional velocity field measurements of a complex internal cooling flow within a gas turbine vane'. Together they form a unique fingerprint.

Cite this